964 resultados para labeling
Resumo:
Non-invasive molecular-imaging technologies are playing a key role in drug discovery, development and delivery. Positron Emission Tomography (PET) is such a molecular imaging technology and a powerful tool for the observation of various deceases in vivo. However, it is limited by the availability of vectors with high selectivity to the target and radionuclides with a physical half-life which matches the biological half-life of the observed process. The 68Ge/68Ga radionuclide generator makes the PET-nuclide anywhere available without an on-site cyclotron. Besides the perfect availability 68Ga shows well suited nuclide properties for PET, but it has to be co-ordinated by a chelator to introduce it in a radiopharmaceuticals.rnHowever, the physical half-life of 68Ga (67.7 min) might limit the spectrum of clinical applications of 68Ga-labelled radiodiagnostics. Furthermore, 68Ga-labelled analogues of endoradiotherapeuticals of longer biological half-live such as 90Y- or 177Lu-labeled peptides and proteins cannot be used to determine individual radiation dosimetry directly. rnThus, radionuclide generator systems providing positron emitting daughters of extended physical half-life are of renewed interest. In this context, generator-derived positron emitters with longer physical half-life are needed, such as 72As (T½ = 26 h) from the 72Se/72As generator, or 44Sc (T½ = 3.97 h) from the 44Ti/44Sc generator.rnIn this thesis the implementation of radioactive gallium-68 and scandium-44 for molecular imaging and nuclear medical diagnosis, beginning with chemical separation and purification of 44Ti as a radionuclide mother, investigation of pilot generators with different elution mode, building a prototype generator, development and investigation of post-processing of the generator eluate, its concentration and further purification, the labeling chemistry under different conditions, in vitro and in vivo studies of labeled compounds and, finally, in vivo imaging experiments are described.
Resumo:
The country-of-origin is the “nationality” of a food when it goes through customs in a foreign country, and is a “brand” when the food is for sale in a foreign market. My research on country-of-origin labeling (COOL) started from a case study on the extra virgin olive oil exported from Italy to China; the result shows that asymmetric and imperfect origin information may lead to market inefficiency, even market failure in emerging countries. Then, I used the Delphi method to conduct qualitative and systematic research on COOL; the panel of experts in food labeling and food policy was composed of 19 members in 13 countries; the most important consensus is that multiple countries of origin marking can provide accurate information about the origin of a food produced by two or more countries, avoiding misinformation for consumers. Moreover, I enhanced the research on COOL by analyzing the rules of origin and drafting a guideline for the standardization of origin marking. Finally, from the perspective of information economics I estimated the potential effect of the multiple countries of origin labeling on the business models of international trade, and analyzed the regulatory options for mandatory or voluntary COOL of main ingredients. This research provides valuable insights for the formulation of COOL policy.
Resumo:
L’Image Labeling è una tecnica che si occupa di assegnare ad ogni pixel di un’immagine un valore, chiamato label (etichetta), in base a determinate caratteristiche dei punti vicini. Lo scopo del labeling è di semplificare e/o modificare la rappresentazione delle immagini al fine di ottenere qualcosa di più significativo e facile da analizzare.
Resumo:
We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.
Resumo:
The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac?AcNH-?-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/?mol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC?? = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-?-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹?F]SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.
Resumo:
Neuroimaging using magnetic resonance imaging (MRI) is required for the investigation of surgically intractable epilepsy. In addition to the standard MRI techniques, perfusion sequences can be added to improve visualization of the underlying pathological changes. Also, as arterial spin-labeling (ASL) MRI perfusion does not require contrast administration, it may even be advantageous in these patients. We report here on three patients with epilepsy and tuberous sclerosis who underwent brain MRI with ASL and positron emission tomography (PET), both of which were found to correlate with each other and with electrophysiological data.
Resumo:
Background and Purpose: In acute stroke it is no longer sufficient to detect simply ischemia, but also to try to evaluate reperfusion/recanalization status and predict eventual hemorrhagic transformation. Arterial spin labeling (ASL) perfusion may have advantages over contrast-enhanced perfusion-weighted imaging (cePWI), and susceptibility weighted imaging (SWI) has an intrinsic sensitivity to paramagnetic effects in addition to its ability to detect small areas of bleeding and hemorrhage. We want to determine here if their combined use in acute stroke and stroke follow-up at 3T could bring new insight into the diagnosis and prognosis of stroke leading to eventual improved patient management. Methods: We prospectively examined 41 patients admitted for acute stroke (NIHSS >1). Early imaging was performed between 1 h and 2 weeks. The imaging protocol included ASL, cePWI, SWI, T2 and diffusion tensor imaging (DTI), in addition to standard stroke protocol. Results: We saw four kinds of imaging patterns based on ASL and SWI: patients with either hypoperfusion and hyperperfusion on ASL with or without changes on SWI. Hyperperfusion was observed on ASL in 12/41 cases, with hyperperfusion status that was not evident on conventional cePWI images. Signs of hemorrhage or blood-brain barrier breakdown were visible on SWI in 15/41 cases, not always resulting in poor outcome (2/15 were scored mRS = 0–6). Early SWI changes, together with hypoperfusion, were associated with the occurrence of hemorrhage. Hyperperfusion on ASL, even when associated with hemorrhage detected on SWI, resulted in good outcome. Hyperperfusion predicted a better outcome than hypoperfusion (p = 0.0148). Conclusions: ASL is able to detect acute-stage hyperperfusion corresponding to luxury perfusion previously reported by PET studies. The presence of hyperperfusion on ASL-type perfusion seems indicative of reperfusion/collateral flow that is protective of hemorrhagic transformation and a marker of favorable tissue outcome. The combination of hypoperfusion and changes on SWI seems on the other hand to predict hemorrhage and/or poor outcome.
Resumo:
INTRODUCTION: Magnetic resonance imaging (MRI) is required for the investigation of surgically intractable epilepsy. In addition to the standard MRI techniques, perfusion sequences can be added to improve visualization of underlying pathological changes. Arterial spin-labeling (ASL) MRI perfusion does not require contrast administration and, for this reason, may have advantages in these patients. METHODS: We report here on 16 patients with epilepsy who underwent MRI of the brain with ASL and positron emission tomography (PET). RESULTS: Despite a slightly reduced resolution with ASL, we found a correlation between ASL, PET and electrophysiological data, with hypoperfusion on ASL that corresponded with hypoperfusion on interictal PET. CONCLUSION: Given the correlation between ASL and PET and electrophysiology, perfusion with ASL could become part of the standard work-up in patients with epilepsy.
Resumo:
Theta burst stimulation (TBS) is a novel variant of repetitive transcranial magnetic stimulation (rTMS), which induces changes in neuronal excitability persisting up to 1h. When elicited in the primary motor cortex, such physiological modulations might also have an impact on motor behavior. In the present study, we applied TBS in combination with pseudo continuous arterial spin labeling (pCASL) in order to address the question of whether TBS effects are measurable by means of changes in physiological parameters such as cerebral blood flow (CBF) and if TBS-induced plasticity can modify motor behavior. Twelve right-handed healthy subjects were stimulated using an inhibitory TBS protocol at subthreshold stimulation intensity targeted over the right motor cortex. The control condition consisted of within-subject Sham treatment in a crossover design. PCASL was performed before (pre TBS/pre Sham) and immediately after treatment (post TBS/post Sham). During the pCASL runs, the subjects performed a sequential fingertapping task with the left hand at individual maximum speed. There was a significant increase of CBF in the primary motor cortex after TBS, but not after Sham. It is assumed that inhibitory TBS induced a "local virtual lesion" which leads to the mobilization of more neuronal resources. There was no TBS-specific modulation in motor behavior, which might indicate that acute changes in brain plasticity caused by TBS are immediately compensated. This compensatory reaction seems to be observable at the metabolic, but not at the behavioral level.
Resumo:
Functional magnetic resonance imaging (fMRI) is presently either performed using blood oxygenation level-dependent (BOLD) contrast or using cerebral blood flow (CBF), measured with arterial spin labeling (ASL) technique. The present fMRI study aimed to provide practical hints to favour one method over the other. It involved three different acquisition methods during visual checkerboard stimulation on nine healthy subjects: 1) CBF contrast obtained from ASL, 2) BOLD contrast extracted from ASL and 3) BOLD contrast from Echo planar imaging. Previous findings were replicated; i) no differences between the three measurements were found in the location of the activated region; ii) differences were found in the temporal characteristics of the signals and iii) BOLD has significantly higher sensitivity than ASL perfusion. ASL fMRI was favoured when the investigation demands for perfusion and task related signal changes. BOLD fMRI is more suitable in conjunction with fast event related design.
Resumo:
Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100 nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700 days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable approximately 150 days post-dosing when excreted tracer originates mainly from bone.
Resumo:
RATIONALE AND OBJECTIVES: A feasibility study on measuring kidney perfusion by a contrast-free magnetic resonance (MR) imaging technique is presented. MATERIALS AND METHODS: A flow-sensitive alternating inversion recovery (FAIR) prepared true fast imaging with steady-state precession (TrueFISP) arterial spin labeling sequence was used on a 3.0-T MR-scanner. The basis for quantification is a two-compartment exchange model proposed by Parkes that corrects for diverse assumptions in single-compartment standard models. RESULTS: Eleven healthy volunteers (mean age, 42.3 years; range 24-55) were examined. The calculated mean renal blood flow values for the exchange model (109 +/- 5 [medulla] and 245 +/- 11 [cortex] ml/min - 100 g) are in good agreement with the literature. Most important, the two-compartment exchange model exhibits a stabilizing effect on the evaluation of perfusion values if the finite permeability of the vessel wall and the venous outflow (fast solution) are considered: the values for the one-compartment standard model were 93 +/- 18 (medulla) and 208 +/- 37 (cortex) ml/min - 100 g. CONCLUSION: This improvement will increase the accuracy of contrast-free imaging of kidney perfusion in treatment renovascular disease.