991 resultados para kissing-loop interaction
Resumo:
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3
Resumo:
Eph receptor tyrosine kinases (Ephs) function as molecular relays that interact with cell surface-bound ephrin ligands to direct the position of migrating cells. Structural studies revealed that, through two distinct contact surfaces on opposite sites of each protein, Eph and ephrin binding domains assemble into symmetric, circular heterotetramers. However, Eph signal initiation requires the assembly of higher order oligomers, suggesting additional points of contact. By screening a random library of EphA3 binding-compromised ephrin-A5 mutants, we have now determined ephrin-A5 residues that are essential for the assembly of high affinity EphA3 signaling complexes. In addition to the two interfaces predicted from the crystal structure of the homologous EphB2 center dot ephrin-B2 complex, we identified a cluster of 10 residues on the ephrin-A5 E alpha-helix, the E-F loop, the underlying H beta-strand, as well as the nearby B - C loop, which define a distinct third surface required for oligomerization and activation of EphA3 signaling. Together with a corresponding third surface region identified recently outside of the minimal ephrin binding domain of EphA3, our findings provide experimental evidence for the essential contribution of three distinct protein-interaction interfaces to assemble functional EphA3 signaling complexes.
Resumo:
The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to Gs, but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The receptor for calcitonin-gene-related peptide (CGRP) is a heterodimer formed by calcitonin-receptor-like receptor (CRLR), a type II (family B) G-protein-coupled receptor, and receptor-activity-modifying protein 1 (RAMP1), a single-membrane-pass protein. It is likely that the first seven or so amino acids of CGRP (which form a disulphide-bonded loop) interact with the transmembrane domain of CRLR to cause receptor activation. The rest of the CGRP molecule falls into three domains. Residues 28-37 and 8-18 are normally required for high-affinity binding, while residues 19-27 form a hinge region. The 28-37 region is almost certainly in direct contact with the receptor; 8-18 may make additional receptor contacts or may stabilize an appropriate conformation of 28-37. It is likely that these regions of CGRP interact both with CRLR and with the extracellular domain of RAMP1.
Resumo:
The issues involved in employing nonlinear optical loop mirrors (NOLMs) as intensity filters in picosecond soliton transmission were examined in detail. It was shown that inserting NOLMs into a periodically amplified transmission line allowed picosecond solitons to be transmitted under conditions considered infeasible until now. The loop mirrors gave dual function, removing low-power background dispersive waves through saturable absorption and applying a negative feedback mechanism to control the amplitude of the solitons. The stochastic characteristics of the pulses that were due to amplifier spontaneous-emission noise were investigated, and a number of new properties were determined. In addition, the mutual interaction between pulses was also significantly different from that observed for longer-duration solitons. The impact of Raman scattering in the computations was included and it was shown that soliton self-frequency shifts may be eliminated by appropriate bandwidth restrictions.
Resumo:
A three-dimensional model of human ABCB1 nucleotide-binding domain (NBD) was developed by homology modelling using the high-resolution human TAP1 transporter structure as template. Interactions between NBD and flavonoids were investigated using in silico docking studies. Ring-A of unmodified flavonoid was located within the NBD P-loop with the 5-hydroxyl group involved in hydrogen bonding with Lys1076. Ring-B was stabilised by hydrophobic stacking interactions with Tyr1044. The 3-hydroxyl group and carbonyl oxygen were extensively involved in hydrogen bonding interactions with amino acids within the NBD. Addition of prenyl, benzyl or geranyl moieties to ring-A (position-6) and hydrocarbon substituents (O-n-butyl to O-n-decyl) to ring-B (position-4) resulted in a size-dependent decrease in predicted docking energy which reflected the increased binding affinities reported in vitro.
Resumo:
The economy is communication between Man and Nature. It is an interaction-network between our outside and inside Nature, that is, the external Nature surrounding us and the internal nature expressing our human essence. Money is an institution of the society, an infrastructure that ensures division of labour, enables the flow of information and material between the participants. The concept of regional material and financial circular flow will be more important with the oncoming peak-oil and post-carbon era. We should describe in time the outlines of closed or semi-closed loops economy. The fundamentals of Input-Output will flourish once again; it could help us formulate the link between the efficiency and resiliency of a regional complex system.
Resumo:
Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct6A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct6A37 or Ψ38/39 and mcm5U34 or s2U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNALysUUU or tRNAGlnUUG, respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm5U34 or s2U34, and this defect can be rescued by overexpression of tRNAGlnUUG. Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications.