142 resultados para keyboard
Resumo:
Pós-graduação em Música - IA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação - FFC
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
This paper presents a Project of an automatic feeder for pets using an Arduino Uno as the control center. Through studies on this driver was possible to create a device with an interface capable to receiving user input and then use it to activate the feeder in the defined hours. For mounting equipment were used steps motors, sensors, keyboard and display, which work together to instrument operation. The project goal was reached and the prototype developed indicating that the Arduino can be used for various applications that can simplify daily tasks
Resumo:
This paper presents a Project of an automatic feeder for pets using an Arduino Uno as the control center. Through studies on this driver was possible to create a device with an interface capable to receiving user input and then use it to activate the feeder in the defined hours. For mounting equipment were used steps motors, sensors, keyboard and display, which work together to instrument operation. The project goal was reached and the prototype developed indicating that the Arduino can be used for various applications that can simplify daily tasks
Resumo:
[EN] We present a geomorphological analysis of Ourense Province (NW Spain) characterized by: a general narrowing of the fluvial network, highlands with smooth reliefs partially eroded and lowlands with residual reliefs, several extensive plains of erosion frequently limited by fractures -among which Tertiary grabens are inserted-, some ?Hollow Surface?-type morphology, absence of sedimentary deposits outside the grabens, and a generalized outcrop of the Hercynian Massif substratum. Traditionally, this ?piano?s keyboard morphology? has been interpreted as expression of block tectonics in tensile regimen; instead we suggest the existence of: an isostatic upheaval simultaneous to a sequence of tectonic pulses of compressive regimen with activity in favour of transcurrent faults, a General Surface (R600), several plains that present a ?Hollow Surface?-type morphology (R1600 R1400 R1000), a generalized alteration that correspond to a same process of decomposition associated to fluctuating conditions of redox equilibrium, a erosional terraces related principaly to the palaeo-fluvial nets; moreover, we propose the existence of two morphoestructural lineament: the first one represented by the Fault of Vila Real (NE-SW) -a ramification of the ?Basal Pyrenean Overthrust?-, that would have been active at an early moment of the tectonic sequence with a left transcurrent fault, secondly the lineament represented by the Fault of Maceda (NNW-SSE) that would be related to the ?Fault System NW-SE? and would have produced a right transcurrent fault during a late tectonic pulse.
Resumo:
Background: It is well known, since the pioneristic observation by Jenkins and Dallenbach (Am J Psychol 1924;35:605-12), that a period of sleep provides a specific advantage for the consolidation of newly acquired informations. Recent research about the possible enhancing effect of sleep on memory consolidation has focused on procedural memory (part of non-declarative memory system, according to Squire’s taxonomy), as it appears the memory sub-system for which the available data are more consistent. The acquisition of a procedural skill follows a typical time course, consisting in a substantial practice-dependent learning followed by a slow, off-line improvement. Sleep seems to play a critical role in promoting the process of slow learning, by consolidating memory traces and making them more stable and resistant to interferences. If sleep is critical for the consolidation of a procedural skill, then an alteration of the organization of sleep should result in a less effective consolidation, and therefore in a reduced memory performance. Such alteration can be experimentally induced, as in a deprivation protocol, or it can be naturally observed in some sleep disorders as, for example, in narcolepsy. In this research, a group of narcoleptic patients, and a group of matched healthy controls, were tested in two different procedural abilities, in order to better define the size and time course of sleep contribution to memory consolidation. Experimental Procedure: A Texture Discrimination Task (Karni & Sagi, Nature 1993;365:250-2) and a Finger Tapping Task (Walker et al., Neuron 2002;35:205-11) were administered to two indipendent samples of drug-naive patients with first-diagnosed narcolepsy with cataplexy (International Classification of Sleep Disorder 2nd ed., 2005), and two samples of matched healthy controls. In the Texture Discrimination task, subjects (n=22) had to learn to recognize a complex visual array on the screen of a personal computer, while in the Finger Tapping task (n=14) they had to press a numeric sequence on a standard keyboard, as quickly and accurately as possible. Three subsequent experimental sessions were scheduled for each partecipant, namely a training session, a first retrieval session the next day, and a second retrieval session one week later. To test for possible circadian effects on learning, half of the subjects performed the training session at 11 a.m. and half at 17 p.m. Performance at training session was taken as a measure of the practice-dependent learning, while performance of subsequent sessions were taken as a measure of the consolidation level achieved respectively after one and seven nights of sleep. Between training and first retrieval session, all participants spent a night in a sleep laboratory and underwent a polygraphic recording. Results and Discussion: In both experimental tasks, while healthy controls improved their performance after one night of undisturbed sleep, narcoleptic patients showed a non statistically significant learning. Despite this, at the second retrieval session either healthy controls and narcoleptics improved their skills. Narcoleptics improved relatively more than controls between first and second retrieval session in the texture discrimination ability, while their performance remained largely lower in the motor (FTT) ability. Sleep parameters showed a grater fragmentation in the sleep of the pathological group, and a different distribution of Stage 1 and 2 NREM sleep in the two groups, being thus consistent with the hypothesis of a lower consolidation power of sleep in narcoleptic patients. Moreover, REM density of the first part of the night of healthy subjects showed a significant correlation with the amount of improvement achieved at the first retrieval session in TDT task, supporting the hypothesis that REM sleep plays an important role in the consolidation of visuo-perceptual skills. Taken together, these results speak in favor of a slower, rather than lower consolidation of procedural skills in narcoleptic patients. Finally, an explanation of the results, based on the possible role of sleep in contrasting the interference provided by task repetition is proposed.
Resumo:
Keyboards, mice, and touch screens are a potential source of infection or contamination in operating rooms, intensive care units, and autopsy suites. The authors present a low-cost prototype of a system, which allows for touch-free control of a medical image viewer. This touch-free navigation system consists of a computer system (IMac, OS X 10.6 Apple, USA) with a medical image viewer (OsiriX, OsiriX foundation, Switzerland) and a depth camera (Kinect, Microsoft, USA). They implemented software that translates the data delivered by the camera and a voice recognition software into keyboard and mouse commands, which are then passed to OsiriX. In this feasibility study, the authors introduced 10 medical professionals to the system and asked them to re-create 12 images from a CT data set. They evaluated response times and usability of the system compared with standard mouse/keyboard control. Users felt comfortable with the system after approximately 10 minutes. Response time was 120 ms. Users required 1.4 times more time to re-create an image with gesture control. Users with OsiriX experience were significantly faster using the mouse/keyboard and faster than users without prior experience. They rated the system 3.4 out of 5 for ease of use in comparison to the mouse/keyboard. The touch-free, gesture-controlled system performs favorably and removes a potential vector for infection, protecting both patients and staff. Because the camera can be quickly and easily integrated into existing systems, requires no calibration, and is low cost, the barriers to using this technology are low.
Resumo:
New designs of user input systems have resulted from the developing technologies and specialized user demands. Conventional keyboard and mouse input devices still dominate the input speed, but other input mechanisms are demanded in special application scenarios. Touch screen and stylus input methods have been widely adopted by PDAs and smartphones. Reduced keypads are necessary for mobile phones. A new design trend is exploring the design space in applications requiring single-handed input, even with eyes-free on small mobile devices. This requires as few keys on the input device to make it feasible to operate. But representing many characters with fewer keys can make the input ambiguous. Accelerometers embedded in mobile devices provide opportunities to combine device movements with keys for input signal disambiguation. Recent research has explored its design space for text input. In this dissertation an accelerometer assisted single key positioning input system is developed. It utilizes input device tilt directions as input signals and maps their sequences to output characters and functions. A generic positioning model is developed as guidelines for designing positioning input systems. A calculator prototype and a text input prototype on the 4+1 (5 positions) positioning input system and the 8+1 (9 positions) positioning input system are implemented using accelerometer readings on a smartphone. Users use one physical key to operate and feedbacks are audible. Controlled experiments are conducted to evaluate the feasibility, learnability, and design space of the accelerometer assisted single key positioning input system. This research can provide inspiration and innovational references for researchers and practitioners in the positioning user input designs, applications of accelerometer readings, and new development of standard machine readable sign languages.
Resumo:
Online-Ausgabe der Musikhs. (Abschrift von 1760) Mus Hs 1626 der Universitätsbibliothek Johann Christian Senckenberg. - Widmungsträger: Johann Heinrich Stannarius
Resumo:
Este proyecto consiste en el diseño y construcción de un sintetizador basado en el chip 6581 Sound Interface Device (SID). Este chip era el encargado de la generación de sonido en el Commodore 64, ordenador personal comercializado en 1982, y fue el primer sintetizador complejo construido para ordenador. El chip en cuestión es un sintetizador de tres voces, cada una de ellas capaz de generar cuatro diferentes formas de onda. Cada voz tiene control independiente de varios parámetros, permitiendo una relativamente amplia variedad de sonidos y efectos, muy útil para su uso en videojuegos. Además está dotado de un filtro programable para conseguir distintos timbres mediante síntesis sustractiva. El sintetizador se ha construido sobre Arduino, una plataforma de electrónica abierta concebida para la creación de prototipos, consistente en una placa de circuito impreso con un microcontrolador, programable desde un PC para que realice múltiples funciones (desde encender LEDs hasta controlar servomecanismos en robótica, procesado y transmisión de datos, etc.). El sintetizador es controlable vía MIDI, por ejemplo, desde un teclado de piano. A través de MIDI recibe información tal como qué notas debe tocar, o los valores de los parámetros del SID que modifican las propiedades del sonido. Además, toda esa información también la puede recibir de un PC mediante una conexión USB. Se han construido dos versiones del sintetizador: una versión “hardware”, que utiliza el SID para la generación de sonido, y otra “software”, que reemplaza el SID por un emulador, es decir, un programa que se comporta (en la medida de lo posible) de la misma manera que el SID. El emulador se ha implementado en un microcontrolador Atmega 168 de Atmel, el mismo que utiliza Arduino. ABSTRACT. This project consists on design and construction of a synthesizer which is based on chip 6581 Sound Interface Device (SID). This chip was used for sound generation on the Commodore 64, a home computer presented in 1982, and it was the first complex synthesizer built for computers. The chip is a three-voice synthesizer, each voice capable of generating four different waveforms. Each voice has independent control of several parameters, allowing a relatively wide variety of sounds and effects, very useful for its use on videogames. It also includes a programmable filter, allowing more timbre control via subtractive synthesis. The synthesizer has been built on Arduino, an open-source electronics prototyping platform that consists on a printed circuit board with a microcontroller, which is programmable with a computer to do several functions (lighting LEDs, controlling servomechanisms on robotics, data processing or transmission, etc.). The synthesizer is controlled via MIDI, in example, from a piano-type keyboard. It receives from MIDI information such as the notes that should be played or SID’s parameter values that modify the sound. It also can receive that information from a PC via USB connection. Two versions of the synthesizer have been built: a hardware one that uses the SID chip for sound generation, and a software one that replaces SID by an emulator, it is, a program that behaves (as far as possible) in the same way the SID would. The emulator is implemented on an Atmel’s Atmega 168 microcontroller, the same one that is used on Arduino.
Resumo:
El principal objetivo del proyecto es intentar reducir los costes de algunas de las operaciones de vigilancia llevadas a cabo por agencias o instituciones de seguridad. El proyecto consiste en diseñar y desarrollar un sistema informático que permita el manejo a distancia de un cuadricóptero a través de un ordenador, utilizando el teclado y visualizando las imágenes recibidas del módulo de la videocámara. Cada cuadricóptero estará compuesto de diferentes módulos y cada módulo tiene una funcionalidad característica. Se desarrollará un sistema de gestión de aeronaves para poder añadir nuevas unidades de cuadricópteros, así como un sistema de gestión de usuarios para administrar los usuarios en el sistema. Adicionalmente, se construirá un prototipo de cuadricóptero y se implementará su unidad controladora para poder realizar las pruebas del sistema desarrollado con ello. ---ABSTRACT---The aim of this project is to attempt to reduce the costs of some surveillance services offered by security agencies or institutions. The project consists in designing and developing a computer system to remotely control a drone or quad-copter through a computer, manipulating the drone through the keyboard and watching the images captured from the camera module. Each drone is built with one or more modules, and each module has its own functionality. Both new drones and new users can be added to the computer system through the drone management system and the user management system, respectively. Both of management systems are going to be developed. The project also includes the making of a quad-copter prototype and a controller unit implementation.
Resumo:
Este Trabajo de Fin de Grado (TFG) tiene el objetivo incorporar el dispositivo Leap Motion [1] en un juego educativo para niños con necesidades educativas especiales para permitirles aprender de una forma divertida mientras disfrutan con los mini juegos que ofrece nuestra aplicación. Está destinado al apoyo del sistema educativo para los niños con necesidades educativas especiales. Debido al público que tenemos como objetivo debemos de tener en cuenta que hay distintos tipos de usuarios según el tipo de discapacidad que tienen. Entre ellas tenemos discapacidad visual, auditiva, cognitiva y motriz. Tenemos distintos mini juegos para facilitar el aprendizaje de las letras y nuevas palabras, los nombres de colores y diferenciarlos y la asociación de conceptos mediante ejemplos sencillos como son ropa, juguetes y comida. Para hacer que la interacción sea más divertida tenemos distintos tipos de dispositivos de interacción: unos comunes como son el teclado y la pantalla táctil y otros más novedosos como son Kinect [2] y Leap Motion que es el que se introducirá en el desarrollo de este Trabajo de Fin de Grado. El otro objetivo de este proyecto es el estudio de los distintos dispositivos de interacción. Se quiere descubrir qué tipo de sistemas de interacción son más sencillos de aprender, cuáles son más intuitivos para los niños, los que les resultan más interesantes permitiendo captar mejor su atención y sus opuestos, es decir, los que son más difíciles de entender, los más monótonos y los más aburridos para ellos.---ABSTRACT---This Final Degree Project (TFG) aims to incorporate the Leap Motion device [1] in an educational game for children with special educational needs to enable them to learn in a funny way while enjoying the mini games that our application offered. It is intended to support the education system for children with special educational needs. Because the public that we have as objective we must take into account that there are different types of users depending on the type of disability they have. Among them we have visual, auditory, cognitive and motor disabilities. We have different mini games to make easier learning of letters and new words, names and distinguish colors and the association of concepts through simple examples such as clothing, toys and food. To make the interaction more fun we have different interaction devices: common such as the keyboard and the touch screen and other more innovative such as Kinect [2] and Leap Motion which is to be introduced in the development of this Final Degree Work. The other objective of this project is to study the various interaction devices. You want to find out what type of interaction systems are easier to learn, which are more intuitive for children, who are more interesting allowing better capture their attention and their opposites, that is, those that are more difficult to understand, the most monotonous and most boring for them.