931 resultados para k-Means algorithm
Resumo:
ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error
Resumo:
Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly, cluster validation indices were used to measure the quality of the clusters obtained by the modified FCM and ckMeans algorithms with the proposed initialization methods when applied to various data sets
Resumo:
This article presents a quantitative and objective approach to cat ganglion cell characterization and classification. The combination of several biologically relevant features such as diameter, eccentricity, fractal dimension, influence histogram, influence area, convex hull area, and convex hull diameter are derived from geometrical transforms and then processed by three different clustering methods (Ward's hierarchical scheme, K-means and genetic algorithm), whose results are then combined by a voting strategy. These experiments indicate the superiority of some features and also suggest some possible biological implications.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Atmosphärische Aerosolpartikel wirken in vielerlei Hinsicht auf die Menschen und die Umwelt ein. Eine genaue Charakterisierung der Partikel hilft deren Wirken zu verstehen und dessen Folgen einzuschätzen. Partikel können hinsichtlich ihrer Größe, ihrer Form und ihrer chemischen Zusammensetzung charakterisiert werden. Mit der Laserablationsmassenspektrometrie ist es möglich die Größe und die chemische Zusammensetzung einzelner Aerosolpartikel zu bestimmen. Im Rahmen dieser Arbeit wurde das SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) zur besseren Analyse insbesondere von atmosphärischen Aerosolpartikeln weiterentwickelt. Der Aerosoleinlass wurde dahingehend optimiert, einen möglichst weiten Partikelgrößenbereich (80 nm - 3 µm) in das SPLAT zu transferieren und zu einem feinen Strahl zu bündeln. Eine neue Beschreibung für die Beziehung der Partikelgröße zu ihrer Geschwindigkeit im Vakuum wurde gefunden. Die Justage des Einlasses wurde mithilfe von Schrittmotoren automatisiert. Die optische Detektion der Partikel wurde so verbessert, dass Partikel mit einer Größe < 100 nm erfasst werden können. Aufbauend auf der optischen Detektion und der automatischen Verkippung des Einlasses wurde eine neue Methode zur Charakterisierung des Partikelstrahls entwickelt. Die Steuerelektronik des SPLAT wurde verbessert, so dass die maximale Analysefrequenz nur durch den Ablationslaser begrenzt wird, der höchsten mit etwa 10 Hz ablatieren kann. Durch eine Optimierung des Vakuumsystems wurde der Ionenverlust im Massenspektrometer um den Faktor 4 verringert.rnrnNeben den hardwareseitigen Weiterentwicklungen des SPLAT bestand ein Großteil dieser Arbeit in der Konzipierung und Implementierung einer Softwarelösung zur Analyse der mit dem SPLAT gewonnenen Rohdaten. CRISP (Concise Retrieval of Information from Single Particles) ist ein auf IGOR PRO (Wavemetrics, USA) aufbauendes Softwarepaket, das die effiziente Auswertung der Einzelpartikel Rohdaten erlaubt. CRISP enthält einen neu entwickelten Algorithmus zur automatischen Massenkalibration jedes einzelnen Massenspektrums, inklusive der Unterdrückung von Rauschen und von Problemen mit Signalen die ein intensives Tailing aufweisen. CRISP stellt Methoden zur automatischen Klassifizierung der Partikel zur Verfügung. Implementiert sind k-means, fuzzy-c-means und eine Form der hierarchischen Einteilung auf Basis eines minimal aufspannenden Baumes. CRISP bietet die Möglichkeit die Daten vorzubehandeln, damit die automatische Einteilung der Partikel schneller abläuft und die Ergebnisse eine höhere Qualität aufweisen. Daneben kann CRISP auf einfache Art und Weise Partikel anhand vorgebener Kriterien sortieren. Die CRISP zugrundeliegende Daten- und Infrastruktur wurde in Hinblick auf Wartung und Erweiterbarkeit erstellt. rnrnIm Rahmen der Arbeit wurde das SPLAT in mehreren Kampagnen erfolgreich eingesetzt und die Fähigkeiten von CRISP konnten anhand der gewonnen Datensätze gezeigt werden.rnrnDas SPLAT ist nun in der Lage effizient im Feldeinsatz zur Charakterisierung des atmosphärischen Aerosols betrieben zu werden, während CRISP eine schnelle und gezielte Auswertung der Daten ermöglicht.
Resumo:
Atmosphärische Partikel beeinflussen das Klima durch Prozesse wie Streuung, Reflexion und Absorption. Zusätzlich fungiert ein Teil der Aerosolpartikel als Wolkenkondensationskeime (CCN), die sich auf die optischen Eigenschaften sowie die Rückstreukraft der Wolken und folglich den Strahlungshaushalt auswirken. Ob ein Aerosolpartikel Eigenschaften eines Wolkenkondensationskeims aufweist, ist vor allem von der Partikelgröße sowie der chemischen Zusammensetzung abhängig. Daher wurde die Methode der Einzelpartikel-Laserablations-Massenspektrometrie angewandt, die eine größenaufgelöste chemische Analyse von Einzelpartikeln erlaubt und zum Verständnis der ablaufenden multiphasenchemischen Prozesse innerhalb der Wolke beitragen soll.rnIm Rahmen dieser Arbeit wurde zur Charakterisierung von atmosphärischem Aerosol sowie von Wolkenresidualpartikel das Einzelpartikel-Massenspektrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer) verwendet. Zusätzlich wurde zur Analyse der Partikelgröße sowie der Anzahlkonzentration ein optischer Partikelzähler betrieben. rnZur Bestimmung einer geeigneten Auswertemethode, die die Einzelpartikelmassenspektren automatisch in Gruppen ähnlich aussehender Spektren sortieren soll, wurden die beiden Algorithmen k-means und fuzzy c-means auf ihrer Richtigkeit überprüft. Es stellte sich heraus, dass beide Algorithmen keine fehlerfreien Ergebnisse lieferten, was u.a. von den Startbedingungen abhängig ist. Der fuzzy c-means lieferte jedoch zuverlässigere Ergebnisse. Darüber hinaus wurden die Massenspektren anhand auftretender charakteristischer chemischer Merkmale (Nitrat, Sulfat, Metalle) analysiert.rnIm Herbst 2010 fand die Feldkampagne HCCT (Hill Cap Cloud Thuringia) im Thüringer Wald statt, bei der die Veränderung von Aerosolpartikeln beim Passieren einer orographischen Wolke sowie ablaufende Prozesse innerhalb der Wolke untersucht wurden. Ein Vergleich der chemischen Zusammensetzung von Hintergrundaerosol und Wolkenresidualpartikeln zeigte, dass die relativen Anteile von Massenspektren der Partikeltypen Ruß und Amine für Wolkenresidualpartikel erhöht waren. Dies lässt sich durch eine gute CCN-Aktivität der intern gemischten Rußpartikel mit Nitrat und Sulfat bzw. auf einen begünstigten Übergang der Aminverbindungen aus der Gas- in die Partikelphase bei hohen relativen Luftfeuchten und tiefen Temperaturen erklären. Darüber hinaus stellte sich heraus, dass bereits mehr als 99% der Partikel des Hintergrundaerosols intern mit Nitrat und/oder Sulfat gemischt waren. Eine detaillierte Analyse des Mischungszustands der Aerosolpartikel zeigte, dass sich sowohl der Nitratgehalt als auch der Sulfatgehalt der Partikel beim Passieren der Wolke erhöhte. rn
Resumo:
Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.
Resumo:
Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.
Resumo:
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.
Resumo:
En esta memoria estudiamos problemas geométricos relacionados con la Localización de Servicios. La Localización de Servicios trata de la ubicación de uno o más recursos (radares, almacenes, pozos exploradores de petróleo, etc) de manera tal que se optimicen ciertos objetivos (servir al mayor número de usuarios posibles, minimizar el coste de transporte, evitar la contaminación de poblaciones cercanas, etc). La resolución de este tipo de problemas de la vida real da lugar a problemas geométricos muy interesantes. En el planteamiento geométrico de muchos de estos problemas los usuarios potenciales del servicio son representados por puntos mientras que los servicios están representados por la figura geométrica que mejor se adapta al servicio prestado: un anillo para el caso de radares, antenas de radio y televisión, aspersores, etc, una cuña si el servicio que se quiere prestar es de iluminación, por ejemplo, etc. Estas son precisamente las figuras geométricas con las que hemos trabajado. En nuestro caso el servicio será sólo uno y el planteamiento formal del problema es como sigue: dado un anillo o una cuña de tamaño fijo y un conjunto de n puntos en el plano, hallar cuál tiene que ser la posición del mismo para que se cubra la mayor cantidad de puntos. Para resolver estos problemas hemos utilizado arreglos de curvas en el plano. Los arreglos son una estructura geométrica bien conocida y estudiada dentro de la Geometría Computacional. Nosotros nos hemos centrado en los arreglos de curvas de Jordán no acotadas que se intersectan dos a dos en a lo sumo dos puntos, ya que estos fueron los arreglos con los que hemos tenido que tratar para la resolución de los problemas. De entre las diferentes técnicas para la construcción de arreglos hemos estudiado el método incremental, ya que conduce a algoritmos que son en general más sencillos desde el punto de vista de la codificación. Como resultado de este estudio hemos obtenido nuevas cotas que mejoran la complejidad del tiempo de construcción de estos arreglos con algoritmos incrementales. La nueva cota Ο(n λ3(n)) supone una mejora respecto a la cota conocida hasta el momento: Ο(nλ4(n)).También hemos visto que en ciertas condiciones estos arreglos pueden construirse en tiempo Ο(nλ2(n)), que es la cota óptima para la construcción de estos arreglos. Restringiendo el estudio a curvas específicas, hemos obtenido que los arreglos de n circunferencias de k radios diferentes pueden construirse en tiempo Ο(n2 min(log(k),α(n))), resultado válido también para arreglos de elipses, parábolas o hipérbolas de tamaños diferentes cuando las figuras son todas isotéticas.---ABSTRACT--- In this work some geometric problems related with facility location are studied. Facility location deals with location of one or more facilities (radars, stores, oil wells, etc.) in such way that some objective functions are to be optimized (to cover the maximum number of users, to minimize the cost of transportation, to avoid pollution in the nearby cities, etc.). These kind of real world problems give rise to very interesting geometrical problems. In the geometric version of many of these problems, users are represented as points while facilities are represented as different geometric objects depending on the shape of the corresponding facility: an annulus in the case of radars, radio or TV antennas, agricultural spraying devices, etc. A wedge in many illumination or surveillance applications. These two shapes are the geometric figures considered in this Thesis. The formal setting of the problem is the following: Given an annulus or a wedge of fixed size and a set of n points in the plane, locate the best position for the annulus or the wedge so that it covers as many points as possible. Those problems are solved by using arrangements of curves in the plane. Arrangements are a well known geometric structure. Here one deals with arrangements of unbounded Jordan curves which intersect each other in at most two points. Among the different techniques for computing arrangements, incremental method is used because it is easier for implementations. New time complexity upper bounds has been obtained in this Thesis for the construction of such arrangements by means of incremental algorithms. New upper bound is Ο(nλ3(n)) which improves the best known up to now Ο(nλ4(n)). It is shown also that sometimes this arrangements can be constructed in Ο(nλ2(n)), which is the optimal bound for constructing these arrangements. With respect to specific type of curves, one gives an Ο(n2 min(log(k),α(n))), algorithm that constructs the arrangement of a set of n circles of k different radii. This algorithm is also valid for ellipses parabolas or hyperbolas of k different sizes when all of them are isothetic.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.