995 resultados para ionomer glass cements


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: to evaluate the human pulp response following pulp capping with calcium hydroxide (CI-I, Group 1), and the resin-modified glass-ionomer Vitrebond (VIT, Group 2). Materials and Methods: Intact teeth with no cavity preparation were used as control Group (ICG, Group 3). Buccal Class V cavities were prepared in 34 sound human premolars. After exposing the pulps, the pulp capping materials were applied and the cavities were Filled using Clearfil Liner Bond 2 bonding agent and Z100 resin-based composite. The teeth were extracted after 5, 30, and from 120 to 300 days, fixed in 10% buffered formalin solution, and prepared according to routine histological techniques. 6-mu m sections were stained with hematoxylin and eosin, Masson's trichrome, or Brown gr Brenn technique for bacterial observation. Results: At 5 days, CH caused a large zone of coagulation necrosis, the mononuclear inflammatory reaction underneath the necrotic zone was slight to moderate. VIT caused a moderate to intense inflammatory pulp response with a large necrotic zone. A number of congested venules associated with plasma extravasation and neutrophilic infiltration was observed. Over time, only CH allowed pulp repair and complete dentin bridging around the pulp exposure site. VIT components displaced into the pulp tissue triggered a persistent inflammatory reaction which appeared to be associated with a lack of dentin bridge formation. After 30 days a few histological sections showed a number of bacteria on the lateral dentin walls. In these samples the pulp response was similar to those samples with no microleakage. VIT was more irritating to pulp tissue than CH, which allowed pulp repair associated with dentin bridge formation. These results suggested that VIT is not an appropriate dental material to be used in direct pulp capping for mechanically exposed human pulps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations.Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti).Material and methods. Two hundred and forty CP Ti cast disks (9.0 x 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 mu m Al2O3 particles; 2) 120 mu m Al2O3 particles; 3) 250 mu m Al2O3 particles; 4) 50 mu m Al2O3 particles + silane (RelyX Ceramic Primer); 5) 120 mu m Al2O3 particles + silane; 6) 250 mu m Al2O3 particles + silane; 7) 30 mu m silica-modified Al2O3 particles (Cojet Sand) + silane; and 8) 120 mu m Al2O3 particles, followed by 110 mu m silica-modified Al2O3 particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5 degrees C to 55 degrees C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (alpha=.05). Failure mode was determined with a stereomicroscope (x20).Results. The surface treatments, cements, and their interaction significantly affected the SBS (P<.001). RelyX Luting 2 and RelyX U100 exhibited similar behavior for all surface treatments. For both cements, only the group abraded with 50 mu m Al2O3 particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 mu m Al2O3 particles resulted in significantly lower SBS than abrasion with 120 mu m and 250 mu m particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode.Conclusions. The adhesive capability of RelyX Luting 2 and RelyX U100 on the SBS was decisive, while for RelyX ARC, mechanical and chemical factors were more influential. (J Prosthet Dent 2012;108:370-376)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The aim of this in vitro study was to analyze the effect of glass-ionomer cement as a liner on the dentin/resin adhesive interface of lateral walls of occlusal restorations after thermocycling.Materials and Methods: Occlusal cavities were prepared in 60 human molars, divided into six groups: no liner (1 and 4); glass-ionomer cement (GIC, Ketac Molar Easymix, 3M ESPE) (2 and 5); and resin-modified glass-ionomer cement (RMGIC, Vitrebond, 3M ESPE) (3 and 6). Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper Single Bond 2, 3M ESPE) that was mixed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. Specimens of groups 4, 5 and 6 were thermocycled (5 degrees C-55 degrees C) with a dwell time of 30 seconds for 5000 cycles. After this period, teeth were sectioned in approximately 0.8-mm slices. One slice of each tooth was randomly selected for confocal microscopy analysis. The other slices were sectioned into 0.8 nun x 0.8 mm beams, which were submitted to microtensile testing (MPa). Data were analyzed using two-way ANOVA and Tukey test (p < 0.05).Results: There was no detectedstatistical difference on bond strength among groups (alpha < 0.05). Confocal microscopy analysis showed a higher mean gap size in group 4(12.5 mu m) and a higher percentage of marginal gaps in the thermocycled groups. The RNIGIC liner groups showed the lowest percentage of marginal gaps.Conclusions: Lining with RMGIC resulted in less gap formation at the dentin/resin adhesive interface after artificial aging. RMGIC or GIC liners did not alter the microtensile bond strength of adhesive system/resin composite to dentin on the lateral walls of Class I restorations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: A restorative material for Class III cavities must, besides being functional, be esthetically satisfactory, providing good working conditions and several shade and color options. A clinical evaluation was initiated to compare the suitability of resin composite and glass-ionomer cement materials for such restorations.Method and materials: Forty-two Class III conservative cavities, esthetically important because of facial extensions, were selected. Resin composite restorations were placed in 21 cavities, and the remaining 21 were restored with glass-ionomer cement. The following characteristics were studied: color or-esthetics, anatomic shape, surface texture, staining, marginal infiltration, dental plaque retention, and occurrence of fracture. After 24 months, the restorations were evaluated.Results: the only statistically significant difference between the resin composite and glass-ionomer cement restorations in the experimental period involved color or esthetics.Conclusion: Resin composites and glass-ionomer materials provide excellent functional and esthetic results in Class III cavities when properly indicated.