99 resultados para invertase
Resumo:
This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, April 28, 1973. Since a number of the contributions will be published in detail elsewhere, only brief summaries of each contribution are included here. Requests for additional information on projects conducted at The University of Nebraska should be directed to Dr. Peter J. Reilly, and those at Kansas State University to the editors. ContentsKenneth J. Jacobson, Andrew H.C. Chan, and Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Cady R. Engler and James S. Yohn, "Protein from Manure" Robert J. Williams, "Kinetics of Sucrose Inversion Using Invertase Immobilized on Hollow Fibers of Cellulose Acetate" David F. Aldis and Thomas A. Carlisle, "Study of a Triiodide-Resin Complex Disinfection System" John C. Heydweiller, "Modeling and Analysis of Symbiotic Growth" Kenneth J. Jacobson, "Synchronized Growth of the Blue Green Alga Microcystis aeruginosa" Clarence C. Y. Ron arui Lincoln L. S. Yang, "Computer Modeling of the Reductive Pentose Phosphate Cycle" Ming-ching T. Kuo, "Application of a Parallel Biochemical Oxidation Kinetic Model to the Design of an Activated Sludge System Including a Primary Clarifier" Prakash N. Mishra, "Optimal Synthesis of Water Renovation Systems"
Resumo:
The symposium whose papers are abstracted here was the fourth in a series held alternately at Kansas State University and the University of Nebraska–Lincoln. Requests for further information on projects conducted at Kansas State should be directed to Professor L.E. Erickson and on those at Nebraska to the editor. ContentsJohn C. Heydweiller, "Estimating Sedimentation of Organisms in a Tower-Type Activated Sludge System" Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Kenneth H. Hsu, "Oxygen Transfer in Tower Systems with Motionless Mixers" Raymond C. Eliason, "Hydrolysis of Sucrose by 20 Invertase Immobilized on Hollow Fibers" Robert Shipman, "Single Cell Protein from Photosynthetic 26 Bacteria" Peter J. Reilly, "Stability of Commensalistic Systems"
Resumo:
This symposium is the sixth of an annual series conducted so that results of biochemical engineering research can be exchanged by the researchers who actually carry it out. The first four meetings were held alternately at Kansas State University and the University of Nebraska–Lincoln for attendees from those two schools. The fifth and sixth involved participants from Kansas State University and Iowa State University; this was the first meeting away from a university campus. Contents"Mathematical Model of Oxygen Transfer in Airlift Fermentors," Chester S. Ho, Kansas State University "Effect of Column Height on Oxygen Transfer in Airlift Systems," Mark E. Orazem, Kansas State University "Mixing Studies in an Oil-Water Airlift System with Motionless 15 Mixers", J. R. Gutierrez, Kansas State University "Purification and Properties of (3-Xylosidase," Gbekeloluwa B. Oguntimein, Iowa State University "Immobilization of Invertase to Cellulose with Cyanuric Chloride," William J. Smith, Iowa State University "Purification and Properties of Dextransucrase," Yah Eric Chen and Hossein Kaboli, Iowa State University "Properties of Immobilized (3-Amylase," Clarence C. Ron, Iowa State University
Resumo:
Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive 11CO2, we demonstrate that root-attacked maize plants allocate more new 11C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem-borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root-attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore-induced carbon reallocation needs to be taken into account when studying plant-mediated interactions between herbivores.
Resumo:
Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.
Resumo:
The effect of Bokashi (B, a fermented compost), slow-release fertilizers (SRFs) and their combined application on mycorrhizal colonization (MC), soil invertase, cellulase, acid (AcP) and alkaline (AlP) phosphatases activities and maize (Zea mays L.) yield was investigated in terrace (TS) and valley (VS) soils in Oaxaca, Mexico. A complete randomized design, seven fertilizer treatments and four replications were used: unamended control (C); conventional fertilization (90-46-00 NPK) (CF); B; SRF1 (Multigro 6®, 21-14-10 NPK); SRF2 (Multigro 3®, 24-05-14 NPK); B+SRF1; B+SRF2. Highest root colonization percentage: CF in VS, and SRF2 in TS. Highest extraradical mycelium length: B, B+SRF1, CF in VS, and B+SRF1 in TS. In both soils, B increased the spore number. Highest AcP activity: B, SRF2 in VS, and B+SRF1, B+SRF2 in TS. Highest AlP activity: B+SRF1, CF in VS, and C in TS. Highest invertase activity: B+SRF1, SRF2, CF in VS, and B in TS. Grain yield only increased with B in VS. The significant interaction soil type × fertilizer treatment for the majority of the biological soil properties analyzed suggests that MC and soil enzyme activity response to fertilization was influenced by soil type. Bokashi, alone or combined with SRFs improves biological soil fertility in maize fields.
Resumo:
The split-ubiquitin technique was used to detect transient protein interactions in living cells. Nub, the N-terminal half of ubiquitin (Ub), was fused to Sec62p, a component of the protein translocation machinery in the endoplasmic reticulum of Saccharomyces cerevisiae. Cub, the C-terminal half of Ub, was fused to the C terminus of a signal sequence. The reconstitution of a quasi-native Ub structure from the two halves of Ub, and the resulting cleavage by Ub-specific proteases at the C terminus of Cub, serve as a gauge of proximity between the two test proteins linked to Nub and Cub. Using this assay, we show that Sec62p is spatially close to the signal sequence of the prepro-α-factor in vivo. This proximity is confined to the nascent polypeptide chain immediately following the signal sequence. In addition, the extent of proximity depends on the nature of the signal sequence. Cub fusions that bore the signal sequence of invertase resulted in a much lower Ub reconstitution with Nub-Sec62p than otherwise identical test proteins bearing the signal sequence of prepro-α-factor. An inactive derivative of Sec62p failed to interact with signal sequences in this assay. These in vivo findings are consistent with Sec62p being part of a signal sequence-binding complex.
A Role for Tlg1p in the Transport of Proteins within the Golgi Apparatus of Saccharomyces cerevisiae
Resumo:
Members of the syntaxin protein family participate in the docking–fusion step of several intracellular vesicular transport events. Tlg1p has been identified as a nonessential protein required for efficient endocytosis as well as the maintenance of normal levels of trans-Golgi network proteins. In this study we independently describe Tlg1p as an essential protein required for cell viability. Depletion of Tlg1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the early Golgi. Temperature-sensitive (ts) mutants of Tlg1p also accumulate the endoplasmic reticulum/cis-Golgi form of carboxypeptidase Y at the nonpermissive temperature (38°C) and exhibit underglycosylation of secreted invertase. Overexpression of Tlg1p complements the growth defect of vti1-11 at the nonpermissive temperature, whereas incomplete complementation was observed with vti1-1, further suggesting a role for Tlg1p in the Golgi apparatus. Overexpression of Sed5p decreases the viability of tlg1 ts mutants compared with wild-type cells, suggesting that tlg1 ts mutants are more susceptible to elevated levels of Sed5p. Tlg1p is able to bind His6-tagged Sec17p (yeast α-SNAP) in a dose-dependent manner and enters into a SNARE complex with Vti1p, Tlg2p, and Vps45p. Morphological analyses by electron microscopy reveal that cells depleted of Tlg1p or tlg1 ts mutants incubated at the restrictive temperature accumulate 40- to 50-nm vesicles and experience fragmentation of the vacuole.
Resumo:
To examine the possibility of active recycling of Emp24p between the endoplasmic reticulum (ER) and the Golgi, we sought to identify transport signal(s) in the carboxyl-terminal region of Emp24p. Reporter molecules were constructed by replacing parts of a control invertase-Wbp1p chimera with those of Emp24p, and their transport rates were assessed. The transport of the reporter was found to be accelerated by the presence of the cytoplasmic domain of Emp24p. Mutational analyses revealed that the two carboxyl-terminal residues, leucine and valine (LV), were necessary and sufficient to accelerate the transport. The acceleration was sequence specific, and the terminal valine appeared to be more important. The LV residues accelerated not only the overall transport to the vacuole but also the ER to cis-Golgi transport, suggesting its function in the ER export. Hence the LV residues are a novel anterograde transport signal. The double-phenylalanine residues did not affect the transport by itself but attenuated the effect of the anterograde transport signal. On the other hand, the transmembrane domain significantly slowed down the ER to cis-Golgi transport and effectively counteracted the anterograde transport signal at this step. It may also take part in the retrieval of the protein, because the overall transport to the vacuole was more evidently slowed down. Consistently, the mutation of a conserved glutamine residue in the transmembrane domain further slowed down the transport in a step after arriving at the cis-Golgi. Taken together, the existence of the anterograde transport signal and the elements that regulate its function support the active recycling of Emp24p.
Resumo:
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.
Resumo:
Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20–40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.
Resumo:
Three different pathways lead to the synthesis of phosphatidylethanolamine (PtdEtn) in yeast, one of which is localized to the inner mitochondrial membrane. To study the contribution of each of these pathways, we constructed a series of deletion mutants in which different combinations of the pathways are blocked. Analysis of their growth phenotypes revealed that a minimal level of PtdEtn is essential for growth. On fermentable carbon sources such as glucose, endogenous ethanolaminephosphate provided by sphingolipid catabolism is sufficient to allow synthesis of the essential amount of PtdEtn through the cytidyldiphosphate (CDP)-ethanolamine pathway. On nonfermentable carbon sources, however, a higher level of PtdEtn is required for growth, and the amounts of PtdEtn produced through the CDP-ethanolamine pathway and by extramitochondrial phosphatidylserine decarboxylase 2 are not sufficient to maintain growth unless the action of the former pathway is enhanced by supplementing the growth medium with ethanolamine. Thus, in the absence of such supplementation, production of PtdEtn by mitochondrial phosphatidylserine decarboxylase 1 becomes essential. In psd1Δ strains or cho1Δ strains (defective in phosphatidylserine synthesis), which contain decreased amounts of PtdEtn, the growth rate on nonfermentable carbon sources correlates with the content of PtdEtn in mitochondria, suggesting that import of PtdEtn into this organelle becomes growth limiting. Although morphological and biochemical analysis revealed no obvious defects of PtdEtn-depleted mitochondria, the mutants exhibited an enhanced formation of respiration-deficient cells. Synthesis of glycosylphosphatidylinositol-anchored proteins is also impaired in PtdEtn-depleted cells, as demonstrated by delayed maturation of Gas1p. Carboxypeptidase Y and invertase, on the other hand, were processed with wild-type kinetics. Thus, PtdEtn depletion does not affect protein secretion in general, suggesting that high levels of nonbilayer-forming lipids such as PtdEtn are not essential for membrane vesicle fusion processes in vivo.
Resumo:
Extracellular invertase mediates phloem unloading via an apoplastic pathway. The gene encoding isoenzyme Nin88 from tobacco was cloned and shown to be characterized by a specific spatial and temporal expression pattern. Tissue-specific antisense repression of Nin88 under control of the corresponding promoter in tobacco results in a block during early stages of pollen development, thus, causing male sterility. This result demonstrates a critical role of extracellular invertase in pollen development and strongly supports the essential function of extracellular sucrose cleavage for supplying carbohydrates to sink tissues via the apoplast. The specific interference with phloem unloading, the sugar status, and metabolic signaling during pollen formation will be a potentially valuable approach to induce male sterility in various crop species for hybrid seed production.
Resumo:
We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented.
Resumo:
Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase.