321 resultados para inversor MLP
Resumo:
The rationale of this study was to investigate molecular flexibility and its influence on physicochemical properties with a view to uncovering additional information on the fuzzy concept of dynamic molecular structure. Indeed, it is now known that computed molecular interaction fields (MIFs) such as molecular electrostatic potentials (MEPs) and lipophilicity potentials (MLPs) are conformation-dependent, as are dipole moments. A database of 125 compounds was used whose conformational space was explored, while conformation-dependent parameters were computed for each non-redundant conformer found in the conformational space of the compounds. These parameters were the virtual log P (log P(MLP), calculated by a MLP approach), the apolar surface area (ASA), polar surface area (PSA), and solvent-accessible surface (SAS). For each compound, the range taken by each parameter (its property space) was divided by the number of rotors taken as an index of flexibility, yielding a parameter termed 'molecular sensitivity'. This parameter was poorly correlated with others (i.e., it contains novel information) and showed the compounds to fall into two broad classes. 'Sensitive' molecules are those whose computed property ranges are markedly sensitive to conformational effects, whereas 'insensitive' (in fact, less sensitive) molecules have property ranges which are comparatively less affected by conformational fluctuations. A pharmacokinetic application is presented.
Resumo:
The present research deals with the review of the analysis and modeling of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered as objects embedded into different feature spaces: maturities; maturity-date, parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their temporal and clustering structures helps to understand the relevance of model and its potential use for the forecasting. Mapping of IRC in a maturity-date feature space is presented and analyzed for the visualization and forecasting purposes.
Resumo:
Methods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer’s disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied three state of the art multiway array decomposition (MAD) methods to extract features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE). We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease.
Resumo:
OBJECTIVES: This study aimed at measuring the lipophilicity and ionization constants of diastereoisomeric dipeptides, interpreting them in terms of conformational behavior, and developing statistical models to predict them. METHODS: A series of 20 dipeptides of general structure NH(2) -L-X-(L or D)-His-OMe was designed and synthetized. Their experimental ionization constants (pK(1) , pK(2) and pK(3) ) and lipophilicity parameters (log P(N) and log D(7.4) ) were measured by potentiometry. Molecular modeling in three media (vacuum, water, and chloroform) was used to explore and sample their conformational space, and for each stored conformer to calculate their radius of gyration, virtual log P (preferably written as log P(MLP) , meaning obtained by the molecular lipophilicity potential (MLP) method) and polar surface area (PSA). Means and ranges were calculated for these properties, as was their sensitivity (i.e., the ratio between property range and number of rotatable bonds). RESULTS: Marked differences between diastereoisomers were seen in their experimental ionization constants and lipophilicity parameters. These differences are explained by molecular flexibility, configuration-dependent differences in intramolecular interactions, and accessibility of functional groups. Multiple linear equations correlated experimental lipophilicity parameters and ionization constants with PSA range and other calculated parameters. CONCLUSION: This study documents the differences in lipophilicity and ionization constants between diastereoisomeric dipeptides. Such configuration-dependent differences are shown to depend markedly on differences in conformational behavior and to be amenable to multiple linear regression. Chirality 24:566-576, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.
Resumo:
En el present projecte es dimensionarà una instal·lació fotovoltaica i una eòlica des dels sistemes de captació energètica fins a l'inversor que aporta el corrent altern necessari per connectar a xarxa per tal de poder fer una comparativa entre els dos sistemes. S'escolleix entre els dos sistemes analitzant el que tingui una major fiabilitat i millors condicions econòmiques.
Disseny d'una instal·lació fotovoltaica connectada a xarxa sobre el teulat d'una vivenda unifamiliar
Resumo:
Els punts que es duent a terme en la realització d'aquest projecte són: dimensionat de la superfície captadora, dimensionat equip conversió DC-AC (inversor), dimensionat cablejat elèctric per interconnexió entre camp FV i la xarxa de baixa tensió, dimensionat de la protecció de la instal·lació i dimensionat protecció sobre les persones
Resumo:
El present Projecte Final de Carrera té com a objectiu la instal·lació de mòduls fotovoltaics en la coberta d’una nau situada a un polígon industrial de Lleida, de dimensions 70 x 30 m, orientada amb un acimut de -30º, per tal de vendre l’energia produïda a la companyia distribuïdora i aconseguir un benefici econòmic. La instal·lació consta de 690 mòduls de silici monocristal·lí de 235 Wp (model HEE215MA65-235) i de dos camps de captació diferenciats en cada ala de la nau, tots ells orientats cap el sud (0º acimut) i inclinats 30º. El camp 1 consta de 360 mòduls i el camp 2 de 330 mòduls, connectats al seu corresponent inversor de 76 kW i 68 kW (models Sunway TG 100-800V i Sunway TG 90-600V). El cost total de la instal·lació és de 707.201,36 Є euros i té un període de retorn de 9 anys. És un projecte rendible i una bona opció ambiental que aconsegueix reduir les emissions de CO2 en 117,6 tones anuals.
Resumo:
El objetivo de este trabajo es analizar como ha evolucionado y los efectos que el tipo de propiedad tiene sobre el desempeño de los bancos en aquellos países de la Europa Central y del Este, que en los últimos años han experimentado con gran intensidad el proceso de integración europea. Con este fin, hemos analizado 242 bancos correspondientes a 12 países (10 nuevos miembros de la UE y 2 en fase de negociación). Para verificar la existencia de un efecto derivado del tipo de propiedad, analizamos las dimensiones de la eficiencia bancaria, rentabilidad, costes, e intermediación, mediante la aplicación de distintas técnicas, tanto paramétricas como no paramétricas. Los resultados muestran la existencia de ciertos efectos derivados del tipo de propiedad. Así, entre los principales resultados, destaca que los bancos privatizados tienden a presentar unos niveles de rentabilidad superiores a los presentados por otros tipos de propiedad, mientras que a su vez, los bancos de origen extranjero son los que de media presentan unos menores niveles de costes, si bien esta diferencia no es estadísticamente significativa. Analizamos también la importancia que supone la presencia de un inversor estratégico en la propiedad de los bancos, obteniendo una mejoría que si bien no es significativa en los ratios de rentabilidad, si lo es en relación a los gastos generales de gestión.
Resumo:
En plena etapa de convulsión y con- nfusión sobre la evolución de la Economía y la Sociedad, el movimiento internacional de Parques Científicos y Tecnológicos continúa avanzando con fuerza. Desde esta perspectiva agregada internacional, la creación de nuevos parques, nuevas empresas del conocimiento y nuevos servicios de referencia sigue creciendo a un ritmo parecido al de años anteriores. En este contexto propongo un ejercicio de hiperrealismo, donde nuestro comportamiento individual y colectivo inversor y de consumo se adaptara a una situación de post-crisis. Es decir, en una situación, no de hipótesis puesto que nos introducimos en un experimento hiperrealista, donde se ha superado la crisis pero hemos aprendido de ella.
Resumo:
Työn tavoitteena on selvittää voidaanko neuroverkkoa käyttää mallintamaan ja ennustamaan polttoaineen vaikutusta nykyaikaisen auton päästöihin. Näin pystyttäisiin vähentämään aikaa vievien ja kalliiden koeajojen tarvetta. Työ tehtiin Lappeenrannan teknillisen yliopiston ja Fortum Oy:n yhteistyöprojektissa. Työssä tehtiin kolme erilaista mallia. Ensimmäisenä tehtiin autokohtainen malli, jolla pyrittiin ennustamaan autokohtaista käyttäytymistä. Toiseksi kokeiltiin mallia, jossa automalli oli yhtenä syötteenä. Kolmantena yritettiin kiertää eräitä aineiston ongelmia käyttämällä "sumeutettuja" polttoaineiden koostumuksia. Työssä käytettiin MLP-neuroverkkoa, joka opetettiin backpropagation algoritmilla. Työssä havaittiin ettei käytettävissä olleella aineistolla ja käytetyillä malleilla pystytä riittävällä tarkkuudella mallintamaan polttoaineen vaikutusta päästöihin. Aineiston ongelmia olivat mm. suuret mittausvarianssit, aineiston pieni määrä sekä aineiston soveltumattomuus neuroverkolla mallintamiseen.
Resumo:
Työssä on tutkittu Koskisen Oy:n vaneritehtaan 2. kuivauslinjalla toimivaa viilun laatulajittelujärjestelmää, jonka toiminnan tehostamiseksi haettiin uusia, vaihtoehtoisia ratkaisuja. Lajittelujärjestelmän toiminnan nopeuttamiseen ja toimivuuden kehittämiseksi haettiin ratkaisuja dimensio-, reuna- ja sisävikojen käsittelyyn. Linjan käyttöasteen kasvattamiseksi sen vikadiagnostiikkaan ja toi¬min¬nan seurantaan haettiin myös uusia menetelmiä. Kuvatun arkin reunatietojen avulla pystytään ottamaan huomioon käytönaikaisten asemointivirheiden aiheuttamat mittavirheet. Vika-alueiden harmaatasoarvoista kerättyä tietoa käytetään histogrammipiirteiden irrotuksessa oksien luokittelua parantamiseksi. Neuroluokittelijoiden käyttöönottoa luokittelijoina puoltavat niiden luokittelunopeus itse luokittelussa ja lähes k-NN-luokittimen tasoon yltävä luokittelutarkkuus. Neuroluokittelijoista tutkittiin monikerros-Perceptron- (MLP) ja oppiva vektorikvantisaatio- (LVQ) luokittelijat. Edellä mainittujen muutosten käyttöönoton avulla parantuneen viiluarkin onnistunut laadutus tuo kustannussäästöjä yritykselle sekä viiluarkkien paremman hyväksikäytön että viilun jatkokäsittelyssä säästyvän työmäärän avulla.
Resumo:
In this article we presents a project [1] developed to demonstrate the capability that Multi-Layer Perceptrons (MLP) have to approximate non-linear functions [2]. The simulation has been implemented in Java to be used in all the computers by Internet [3], with a simple operation and pleasant interface. The power of the simulations is in the possibility of the user of seeing the evolutions of the approaches, the contribution of each neuron, the control of the different parameters, etc. In addition, to guide the user during the simulation, an online help has been implemented.
Resumo:
Objetivou-se, neste trabalho, avaliar o ajuste do modelo volumétrico de Schumacher e Hall por diferentes algoritmos, bem como a aplicação de redes neurais artificiais para estimação do volume de madeira de eucalipto em função do diâmetro a 1,30 m do solo (DAP), da altura total (Ht) e do clone. Foram utilizadas 21 cubagens de povoamentos de clones de eucalipto com DAP variando de 4,5 a 28,3 cm e altura total de 6,6 a 33,8 m, num total de 862 árvores. O modelo volumétrico de Schumacher e Hall foi ajustado nas formas linear e não linear, com os seguintes algoritmos: Gauss-Newton, Quasi-Newton, Levenberg-Marquardt, Simplex, Hooke-Jeeves Pattern, Rosenbrock Pattern, Simplex, Hooke-Jeeves e Rosenbrock, utilizado simultaneamente com o método Quasi-Newton e com o princípio da Máxima Verossimilhança. Diferentes arquiteturas e modelos (Multilayer Perceptron MLP e Radial Basis Function RBF) de redes neurais artificiais foram testados, sendo selecionadas as redes que melhor representaram os dados. As estimativas dos volumes foram avaliadas por gráficos de volume estimado em função do volume observado e pelo teste estatístico L&O. Assim, conclui-se que o ajuste do modelo de Schumacher e Hall pode ser usado na sua forma linear, com boa representatividade e sem apresentar tendenciosidade; os algoritmos Gauss-Newton, Quasi-Newton e Levenberg-Marquardt mostraram-se eficientes para o ajuste do modelo volumétrico de Schumacher e Hall, e as redes neurais artificiais apresentaram boa adequação ao problema, sendo elas altamente recomendadas para realizar prognose da produção de florestas plantadas.