995 resultados para internal friction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since high-temperature superconductors were discovered, several studies have been made on their physical properties, attempting to associate them to the origin of superconductivity. Obviously, the oxygen atoms interstitially dissolved in the matrix have an important role in superconductivity, since they move easily in the lattice. In addition, they contribute to hole creation in the CuO2 planes. Anelastic spectroscopy ( internal friction) measurements are sensitive tools for the study of defects in solids, in particular for oxygen mobility. In this paper, Bi2Sr2CaCu2O8+y samples with several different amounts of interstitial oxygen were analysed by means of anelastic spectroscopy measurements. The measurements were performed by using a torsion pendulum operating at a frequency of about 40 Hz. Complex relaxation structures were observed and attributed to the shift of the oxygen interstitial atoms in BiO chains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anelastic spectroscopy has been performed on a sample of superconducting oxide SmBa2Cu3O7-delta (SBCO) using a torsion pendulum operating with frequency around 10 Hz. A thermally activated relaxation peak is observed near 500 K with the activation enthalpy of 1.55 +/- 0.03 eV and the pre-exponential factor of approximately 10(-15) s, which is attributed to the mobility of non-stoichiometric oxygen by jumps in positions O1 and O5 of the lattice. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last 50 years several studies have been made to understand the relaxation mechanisms of the heavy interstitial atoms present in transition metals and their alloys. Internal friction measurements have been carried out in a Nb-Ti alloy containing 3.1 at.% of Ti produced by the Materials Department of Chemical Engineering Faculty of Lorena (Brazil), with several quantities of oxygen in solid solution using a torsion pendulum. These measurements have been performed by a torsion pendulum in the temperature range from 300 to 700 K with an oscillation frequency between 0.5 and 10 Hz. The experimental results show complex internal friction spectra that have been resolved, into a series of Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height and temperature of the peak, the activation energy and the relaxation time of the process. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last 30 years several studies have been made to understand the relaxation mechanisms of the hydrogen atoms present in transition metals and their alloys. In this work, we observed the stress-induced ordering of hydrogen atoms around the interstitial oxygen atoms near the niobium matrix atoms. We studied this relaxation process by measuring the attenuation of longitudinal ultrasonic waves. These measurements were made in Nb1.0%Zr polycrystalline alloys at 10 and 30 MHz, pure and doped with 0.7 and 4.2 at.% hydrogen. The results revealed a thermally activated relaxation structure around 202 K and 235 K for 10 MHz and 30 MHz respectively. This relaxation structure increases with increasing hydrogen concentration. © 1994.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial solutes in body-centered cubic metals, such as oxygen in tantalum, produce ideally Snoek effects when they are in solutions enough diluted. However, for higher concentration of these solutes, more complex relaxation process can occur, as interaction between interstitial solutes and dislocations. Anelastic relaxation measurements were carried out in polycrystalline tantalum samples, using torsion pendulum inverted, operating between 300 K and 680 K and oscillation frequencies in the hertz bandwidth, for three different experimental sample conditions: as received sample, annealed and annealed followed by a treatment in an oxygen atmosphere. These measurements have revealed the following behavior: the intensity of the internal friction peak associated to matrix-interstitial interaction Ta-O decreased between the first run and the next runs, and this phenomenon did not occur for the others conditions. The variation of relaxation strength of Ta-O peak, with number of runs is due to a decrease of an amount of oxygen in solid solution, which can be associated with the precipitation of new phases in Ta sample and with the trapping of oxygen atoms by dislocations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5°10 -5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials. © (2010) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)