947 resultados para interaction in real time
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).
Resumo:
This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.
Resumo:
Real-time estimates of output gaps and inflation gaps differ from the values that are obtained using data available long after the event. Part of the problem is that the data on which the real-time estimates are based is subsequently revised. We show that vector-autoregressive models of data vintages provide forecasts of post-revision values of future observations and of already-released observations capable of improving estimates of output and inflation gaps in real time. Our findings indicate that annual revisions to output and inflation data are in part predictable based on their past vintages.
Resumo:
Factor forecasting models are shown to deliver real-time gains over autoregressive models for US real activity variables during the recent period, but are less successful for nominal variables. The gains are largely due to the Financial Crisis period, and are primarily at the shortest (one quarter ahead) horizon. Excluding the pre-Great Moderation years from the factor forecasting model estimation period (but not from the data used to extract factors) results in a marked fillip in factor model forecast accuracy, but does the same for the AR model forecasts. The relative performance of the factor models compared to the AR models is largely unaffected by whether the exercise is in real time or is pseudo out-of-sample.
Resumo:
The purpose of this work is to study the potentialities in the phase-shifting real-time holographic interferometry using photorefractive crystals as the recording medium for wave-optics analysis in optical elements and non-linear optical materials. This technique was used for obtaining quantitative measurements from the phase distributions of the wave front of lens and lens systems along the propagation direction with in situ visualization, monitoring and analysis in real time. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This paper presents an experimental characterization of the behavior of an analogous version of the Chua`s circuit. The electronic circuit signals are captured using a data acquisition board (DAQ) and processed using LabVIEW environment. The following aspects of the time series analysis are analyzed: time waveforms, phase portraits, frequency spectra, Poincar, sections, and bifurcation diagram. The circuit behavior is experimentally mapped with the parameter variations, where are identified equilibrium points, periodic and chaotic attractors, and bifurcations. These analysis techniques are performed in real-time and can be applied to characterize, with precision, several nonlinear systems.
Resumo:
The aim of this thesis project is to develop the Traffic Sign Recognition algorithm for real time. Inreal time environment, vehicles move at high speed on roads. For the vehicle intelligent system itbecomes essential to detect, process and recognize the traffic sign which is coming in front ofvehicle with high relative velocity, at the right time, so that the driver would be able to pro-actsimultaneously on instructions given in the Traffic Sign. The system assists drivers about trafficsigns they did not recognize before passing them. With the Traffic Sign Recognition system, thevehicle becomes aware of the traffic environment and reacts according to the situation.The objective of the project is to develop a system which can recognize the traffic signs in real time.The three target parameters are the system’s response time in real-time video streaming, the trafficsign recognition speed in still images and the recognition accuracy. The system consists of threeprocesses; the traffic sign detection, the traffic sign recognition and the traffic sign tracking. Thedetection process uses physical properties of traffic signs based on a priori knowledge to detect roadsigns. It generates the road sign image as the input to the recognition process. The recognitionprocess is implemented using the Pattern Matching algorithm. The system was first tested onstationary images where it showed on average 97% accuracy with the average processing time of0.15 seconds for traffic sign recognition. This procedure was then applied to the real time videostreaming. Finally the tracking of traffic signs was developed using Blob tracking which showed theaverage recognition accuracy to 95% in real time and improved the system’s average response timeto 0.04 seconds. This project has been implemented in C-language using the Open Computer VisionLibrary.
Resumo:
This paper describes an electronic device conceived to convert common web texts into sequences of corresponding Braille signals, which are immediately reproduced onto an array ( keyboard) of electromechanical actuators. These actuators are reconfigurable in real time, displaying the Braille characters as matrices of points composed by small stems which can be lowered or raised according to the Braille code. The device, together with its conversion software package, can provide direct access to web texts in any personal computer, thus avoiding the use of complicated Braille printers.
Resumo:
Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Wireless LANs are growing rapidly and security has always been a concern. We have implemented a hybrid system, which will not only detect active attacks like identity theft causing denial of service attacks, but will also detect the usage of access point discovery tools. The system responds in real time by sending out an alert to the network administrator.
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Resumo:
La presenta tesi ha come obiettivo la modellazione, tramite il software Matlab Simulink, di un motore a combustione interna ad accensione comandata nelle sue parti fondamentali ed il relativo veicolo. Le parti modellate inerenti al gruppo termico sono quelle di produzione coppia, il sistema di aspirazione con un modello statico e uno dinamico ed, infine, il sistema di scarico. Per quanto riguarda la parte veicolo si implementa la dinamica della driveline e quella longitudinale del mezzo stesso. Il simulatore deve essere costituito da un layout modulare e ha come ipotesi fondamentale quella di poter lavorare in real-time, quindi si utilizza un modello zero-dimensionale e con valori costanti all'interno di un singolo ciclo motore. In conclusione, viene mostrato come implementare il modello in un sistema SIL per poterne testare il funzionamento in tempo reale e visualizzare i risultati da esso prodotti.