839 resultados para intensity-modulated beam
Resumo:
Radiotherapy is one of the main treatments used against cancer. Radiotherapy uses radiation to destroy cancerous cells trying, at the same time, to minimize the damages in healthy tissues. The planning of a radiotherapy treatment is patient dependent, resulting in a lengthy trial and error procedure until a treatment complying as most as possible with the medical prescription is found. Intensity Modulated Radiation Therapy (IMRT) is one technique of radiation treatment that allows the achievement of a high degree of conformity between the area to be treated and the dose absorbed by healthy tissues. Nevertheless, it is still not possible to eliminate completely the potential treatments’ side-effects. In this retrospective study we use the clinical data from patients with head-and-neck cancer treated at the Portuguese Institute of Oncology of Coimbra and explore the possibility of classifying new and untreated patients according to the probability of xerostomia 12 months after the beginning of IMRT treatments by using a logistic regression approach. The results obtained show that the classifier presents a high discriminative ability in predicting the binary response “at risk for xerostomia at 12 months”
Resumo:
INTRODUCTION: EORTC trial 22991 was designed to evaluate the addition of concomitant and adjuvant short-term hormonal treatments to curative radiotherapy in terms of disease-free survival for patients with intermediate risk localized prostate cancer. In order to assess the compliance to the 3D conformal radiotherapy protocol guidelines, all participating centres were requested to participate in a dummy run procedure. An individual case review was performed for the largest recruiting centres as well. MATERIALS AND METHODS: CT-data of an eligible prostate cancer patient were sent to 30 centres including a description of the clinical case. The investigator was requested to delineate the volumes of interest and to perform treatment planning according to the protocol. Thereafter, the investigators of the 12 most actively recruiting centres were requested to provide data on five randomly selected patients for an individual case review. RESULTS: Volume delineation varied significantly between investigators. Dose constraints for organs at risk (rectum, bladder, hips) were difficult to meet. In the individual case review, no major protocol deviations were observed, but a number of dose reporting problems were documented for centres using IMRT. CONCLUSIONS: Overall, results of this quality assurance program were satisfactory. The efficacy of the combination of a dummy run procedure with an individual case review is confirmed in this study, as none of the evaluated patient files harboured a major protocol deviation. Quality assurance remains a very important tool in radiotherapy to increase the reliability of the trial results. Special attention should be given when designing quality assurance programs for more complex irradiation techniques.
Resumo:
Les cancers du cavum ont une incidence d'environ 0,5 cas par an et par 100 000 habitants pour les hommes en France, mais sont endémiques dans des régions comme l'Asie du Sud-Est. La prise en charge thérapeutique par radiothérapie exclusive, qui a longtemps été le standard, permet d'obtenir des taux de contrôle local pour les stades T3-T4 de l'ordre de 50 à 75 % des cas. Les techniques d'irradiation en modulation d'intensité permettent une excellente couverture dosimétrique avec une meilleure protection des organes à risque et doivent être privilégiées. L'apport d'une chimiothérapie concomitante à l'IMRT améliore significativement les taux de survie globale qui sont supérieurs ou égaux à 75 % à cinq ans dans les stades avancés. Dans la pratique courante, une radiochimiothérapie concomitante à base de sels de platine est réalisée mais la place des cures néoadjuvantes et/ou adjuvantes est discutée dans le but principal de diminuer les rechutes à distance, des études sont en cours. Enfin, la surveillance doit être axée sur la détection précoce de rechutes locales potentiellement curables et sur la prise en charge des séquelles thérapeutiques à long terme. Cancer of the nasopharynx is an uncommon malignancy in France (incidence = 0.5/year/100,000 men) but is endemic in areas like in South-East Asia. Exclusive radiation therapy used to be the standard and results in local control rates for T3-T4 tumors around 50-75 %. Intensity-modulated radiotherapy (IMRT) improves tumor coverage with a sparing of organs at risk and has to be privileged. Concurrent chemotherapy with IMRT achieved significant survival benefice with 5-year overall survival above 75 %. Concurrent radiochemotherapy with platinium is the most frequent scheme but induction and adjuvant chemotherapies are discussed to reduce distant failure: studies are currently ongoing. Follow-up aims to detect early local failures with a chance of cure and to manage long-term toxicities.
Resumo:
Objective: Standard treatment of locally advanced (stages III and IV A-B) nasopharyngeal carcinoma (NPC) consists in chemoradiotherapy with 5-y survival rates of around 60%. However, acute toxicity prevents the administration of adequate adjuvant chemotherapy in nearly half of the patients. This situation has led to the hypothesis that induction chemotherapy followed by chemoradiotherapy may be a superior approach. Many ongoing studies are testing the role of induction chemotherapy in this setting. Newer radiotherapy techniques are becoming available (intensity modulated radiotherapy [IMRT] and tomotherapy). They can achieve a higher degree of accuracy in conforming the radiation to the planned target volume while sparing normal tissue resulting in less acute and long-term toxicity. Methods: We report here our local experience of 11 consecutive locally advanced NPC patients treated between June 2004 and October 2007. Median age was 46 years (range, 17-65). All but one were male patients. Initial stage was stage III in 5, and stage IVA-B in 6 patients. Treatment consisted of 3 cycles of induction TCF (Docetaxel 75 mg/m2- Cisplatin 75 mg/m2- 5-fluorouracil 750 mg/m2/d 5 days) chemotherapy followed by concomitant chemoradiotherapy with 3 cycles of cisplatin (100 mg/m2), or carboplatin (AUC 5) in case of renal impairment. Radiotherapy was delivered by either IMRT or tomotherapy. Macroscopic disease (tumor + involved lymph nodes) was treated with 70 Gy, 2 Gy/fraction (IMRT), or 69.6 Gy, 1.12 Gy/fraction (simultaneus integrated boost [SIB] technique). Elective nodal irradiation of 46-54 Gy lymph was performed in all patients, whereas elective irradiation of the entire nasopharynx (60 Gy) half of patients. Results: All but one tumor were EBV positive. Induction chemotherapy was done as planned for 8 patients (73%). Two patients had only 2 cycles, 1 patient had only1 cycle of TCF, and the other without docetaxel. Concomitant chemotherapy was given as planned in 7 patients (64%). Four patients had only 2 cycles. Radiotherapy could be delivered as planned in all patients. Eight weeks post treatment all patients proved to have a CR (CR or uCR). After a median follow-up of 11 months (range, 6-38 months) only one patient has relapsed. Details on acute and 1 year toxicities will be presented. Conclusion: Treatment of locally advancedNPC with induction and concomitant chemotherapy is feasible and well tolerated. The use of IMRT or tomotherapy technique seems to ameliorate the therapeutic index particularly in regard with xerostomia. All our patients presented a complete response. For the assessment of survival and long-term toxicity, a longer follow-up period is needed.
Resumo:
Purpose of reviewThis review provides information and an update on stereotactic radiosurgery (SRS) equipment, with a focus on intracranial lesions and brain neoplasms.Recent findingsGamma Knife radiosurgery represents the gold standard for intracranial radiosurgery, using a dedicated equipment, and has recently evolved with a newly designed technology, Leksell Gamma Knife Perfexion. Linear accelerator-based radiosurgery is more recent, and originally based on existing systems, either adapted or dedicated to radiosurgery. Equipment incorporating specific technologies, such as the robotic CyberKnife system, has been developed. Novel concepts in radiation therapy delivery techniques, such as intensity-modulated radiotherapy, were also developed; their integration with computed tomography imaging and helical delivery has led to the TomoTherapy system. Recent data on the management of intracranial tumors with radiosurgery illustrate the trend toward a larger use and acceptance of this therapeutic modality.SummarySRS has become an important alternative treatment for a variety of lesions. Each radiosurgery system has its advantages and limitations. The 'perfect' and ubiquitous system does not exist. The choice of a radiosurgery system may vary with the strategy and needs of specific radiosurgery programs. No center can afford to acquire every technology, and strategic choices have to be made. Institutions with large neurosurgery and radiation oncology programs usually have more than one system, allowing optimization of the management of patients with a choice of open neurosurgery, radiosurgery, and radiotherapy. Given its minimally invasive nature and increasing clinical acceptance, SRS will continue to progress and offer new advances as a therapeutic tool in neurosurgery and radiotherapy.
Resumo:
Total body irradiation (TBI) has an established role as preparative regimen for bone-marrow transplantation in the treatment of hematological malignancies. Many randomized trials demonstrated that the clinical outcomes obtained from the association of TBI and cyclophosphamide are equivalent, or, sometimes, better than those based on chemotherapeutic agents. Despite the therapeutic progress of the last years, and the consequent improvement in the overall survival, this preparative regimen remains always associated with a relatively high rate of acute and late toxicity. In this article, we review the actual indications of TBI in clinical practice, and analyze the technological progress in this domain. We focus on the hypothesis that a selective irradiation of the hematopoietic or lymphoid organs is actually possible with intensity-modulated radiotherapy. Technical limits and preliminary results in terms of acute and late toxicities of intensity-modulated TBI are analyzed. With these new technologies, treatment-related toxicity is not anymore a major limiting factor in the preparative regimens for bone-marrow transplantation, allowing for a larger spectrum of TBI indications, a possible extension to patients older than 50 years, or a dose escalation. Preliminary results warrant, however, further evaluation in clinical trials to better assess the impact of this new approach on disease control and the long-term toxicity.
Resumo:
Background: Adenosquamous carcinoma (AC) of the head and neck is a distinct entity first described in 1968. Its natural history is more aggressive than squamous-cell carcinoma. The aim of this study was to assess the clinical profile, patterns of failure, and prognostic factors in patients with AC of the head and neck treated by radiation therapy (RT) with or without chemotherapy (CT).Materials and Methods: Data from 19 patients with stage I (n = 3), II (n = 1), III (n = 4), or IVa (n = 11) AC, treated between 1989 and 2009, were collected in a retrospective multicenter Rare Cancer Network study. Median age was 60 years (range, 48−73). Fifteen patients were male, and 4 female. Risk factors, including perineural invasion, lymphangitis, vascular invasion, positive margins were present in the majority (83%) of the patients. Tumour sites included oral cavity in 4, oropharynx in 4, hypopharynx in 2, larynx in 2, salivary glands in 2, nasal vestibule in 2, maxillary sinus in 2, and nasopharynx in 1 patient. Surgery (S) was performed in all but 5 patients. S alone was performed in only 1 patient, and definitive RT alone in 3 patients. Fifteen patients received combined modality treatment (S+RT in 11, RT+CT in 2, and all of the three modalities in 2 patients). Median RT dose to the primary and to the nodes was 66 Gy (range, 50−72) and 53 Gy (range, 44−66), respectively (1.8−2.0 Gy/fr., 5 fr./week). In 4 patients, the planning treatment volume included the primary tumour site only. Eight patients were treated with 2D RT, 7 with 3D conformal RT, and 2 with intensity-modulated RT.Results: After a median follow-up period of 39 months (range, 9−62), 9 patients developed distant metastases (lung, bone, mediastinum, and liver), 7 presented nodal recurrences, and only 4 had a local relapse at the primary site (all in-field recurrences). At last follow-up, 7 patients were alive without disease, 1 alive with disease, 9 died from progressive disease, and 2 died from intercurrent disease. The 3-year and median overall survival, disease-free survival (DFS), and locoregional control rates were 55% (95% confidence interval [CI]: 32−78%) and 39 months, 34% (95% CI: 12−56%) and 22 months, and 50% (95% CI: 22−78%) and 33 months, respectively. In multivariate analysis (Cox model), DFS was negatively influenced by the presence of extracapsular extension (p = 0.01) and advanced stage (IV versus I−III, p = 0.002).Conclusions: Overall prognosis of locoregionally advanced AC remains poor, and distant metastases and nodal relapse occur in almost half of the cases. However, local control is relatively better, and early stage AC patients had prolonged DFS when treated with combined-modality treatment.
Resumo:
Intensity modulated radiotherapy (IMRT) is a conformal radiotherapy that produces concave and irregular target volume dose distributions. IMRT has a potential to reduce the volume of healthy tissue irradiated to a high dose, but this often at the price of an increased volume of normal tissue irradiated to a low dose. Clinical benefits of IMRT are expected to be most pronounced at the body sites where sensitive normal tissues surround or are located next to a target with a complex 3D shape. The irradiation doses needed for tumor control are often markedly higher than the tolerance of the radiation sensitive structures such as the spinal cord, the optic nerves, the eyes, or the salivary glands in the treatment of head and neck cancer. Parotid gland salivary flow is markedly reduced following a cumulative dose of 30 50 Gy given with conventional fractionation and xerostomia may be prevented in most patients using a conformal parotid-sparing radiotherapy technique. However, in cohort studies where IMRT was compared with conventional and conformal radiotherapy techniques in the treatment of laryngeal or oropharyngeal carcinoma, the dosimetric advantage of IMRT translated into a reduction of late salivary toxicity with no apparent adverse impact on the tumor control. IMRT might reduce the radiation dose to the major salivary glands and the risk of permanent xerostomia without compromizing the likelihood for cure. Alternatively, IMRT might allow the target dose escalation at a given level of normal tissue damage. We describe here the clinical results on postirradiation salivary gland function in head and neck cancer patients treated with IMRT, and the technical aspects of IMRT applied. The results suggest that the major salivary gland function can be maintained with IMRT without a need to compromise the clinical target volume dose, or the locoregional control.
Resumo:
Background: Panitumumab (pmab), a fully human monoclonal antibody against the epidermal growth factor receptor (EGFR), is indicated as monotherapy for treatment of metastatic colorectal cancer. This ongoing study is designed to assess the efficacy and safety of pmab in combination with radiotherapy (PRT) compared to chemoradiotherapy (CRT) as initial treatment of unresected, locally advanced SCCHN (ClinicalTrials.gov Identifier: NCT00547157). Methods: This is a phase 2, open-label, randomized, multicenter study. Eligible patients (pts) were randomized 2:3 to receive cisplatin 100 mg/m2 on days 1 and 22 of RT or pmab 9.0 mg/kg on days 1, 22, and 43. Accelerated RT (70 to 72 Gy − delivered over 6 to 6.5 weeks) was planned for all pts and was delivered either by intensity-modulated radiation therapy (IMRT) modality or by three-dimensional conformal (3D-CRT) modality. The primary endpoint is local-regional control (LRC) rate at 2 years. Key secondary endpoints include PFS, OS, and safety. An external, independent data monitoring committee conducts planned safety and efficacy reviews during the course of the trial. Results: Pooled data from this planned interim safety analysis includes the first 52 of the 150 planned pts; 44 (84.6%) are male; median (range) age is 57 (33−77) years; ECOG PS 0: 65%, PS 1: 35%; 20 (39%) pts received IMRT, and 32 (61%) pts received 3D-CRT. Fifty (96%) pts completed RT, and 50 pts received RT per protocol without a major deviation. The median (range) total RT dose administered was 72 (64−74) Gy. The most common grade _ 3 adverse events graded using the CTCAE version 3.0 are shown (Table). Conclusions: After the interim safety analysis, CONCERT-2 continues per protocol. Study enrollment is estimated to be completed by October 2009.
Resumo:
In the last decades, new technologies have been introduced in the daily clinical practice of the radiation oncologist: 3D-Conformal radiotherapy (RT) became almost universally available, thereafter, intensity modulated RT (IMRT) gained large diffusion, due to its potential impact in improving the clinical outcomes, and more recently, helical and volumetric arc IMRT with image-guided RT are becoming more and more diffused and used for prostate cancer patients. The conventional dose-fractionation results to be the best compromise between the efficacy and the safety of the treatment, but combining new techniques, modern RT allows to overcame one of the major limits of the 'older' RT: the impossibility of delivering higher total doses and/or high dose/fraction. The evidences regarding radiobiology, clinical and technological evolution of RT in prostate cancer have been reported and discussed.
Resumo:
Purpose/Objective(s): Adenosquamous carcinoma (AC) of the head and neck is a distinct entity first described in 1968. Its natural history is more aggressive than squamous cell carcinoma but this is based on very small series reported in the literature. The goal of this study was to assess the clinical profile, outcome, patterns of failure and prognostic factors in patients with AC of the head and neck treated by radiation therapy (RT) with or without chemotherapy (CT).Materials/Methods: Data from 18 patients with Stage I (n = 3), II (n = 1), III (n = 4), or IVa (n = 10) AC, treated between 1989 and 2009, were collected in a retrospective multicenter Rare Cancer Network study. Median age was 60 years (range, 48 - 73 years). Fourteen patients were male and 4 female. Risk factors, including perineural invasion, lymphangitis, vascular invasion, positive margins, were present in 83% of the patients. Tumor sites included oral cavity in 4, oropharynx in 4, hypopharynx in2, larynx in 2, salivary glands in 2, nasal vestibule in 2, nasopharynx in 1, and maxillary sinus in 1 patient. Surgery (S) was performed in all but 5 patients. S alone was performed in only 1 patient, and definitive RT alone in 3 patients. Fourteen patients received combined modality treatment (S+RT in 10, RT+CT in 2, and all of the three modalities in 2 patients). Median RT dose to the primary and to the nodes was 66 Gy (range, 50 - 72 Gy) and 53 Gy (range, 44 - 66 Gy), respectively (1.8 - 2.0 Gy/fr., 5 fr./ week). In 4 patients, the planning treatment volume included the primary tumor site only. Seven patients were treated with 2D RT, 7 with 3D conformal RT, and 2 with intensity-modulated RT.Results: After a median follow-up period of 38 months (range, 9 - 62 months), 8 patients developed distant metastases (lung, bone, mediastinum, and liver), 6 presented nodal recurrences, and only 4 had a local relapse at the primary site (all in-field recurrences). At last follow-up, 6 patients were alive without disease, 1 alive with disease, 9 died from progressive disease, and 2 died from intercurrent disease. The 3-year and median overall survival, disease-free survival (DFS) and locoregional control rates were 52% (95% confidence interval [CI]: 28 - 76%) and 39 months, 36% (95% CI: 13 - 49%) and 12 months, and 54% (95% CI: 26 - 82%) and 40 months, respectively. In multivariate analysis (Cox model), DFS was negatively influenced by the presence of extracapsular extension (p = 0.02) and advanced stage (IV versus I-III, p = 0.003).Conclusions: Overall prognosis of locoregionally advanced AC remains poor, and distant metastases and nodal relapse occur in almost half of the cases. However, local control is relatively good, and early stage AC patients had prolonged DFS when treated with combined modality treatment.
Resumo:
PURPOSE: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using (18)F-labeled fluorodeoxyglucose positron emission tomography [(18)F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). METHODS AND MATERIALS: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [(18)F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BMTOT). Active bone marrow (BMACT) was contoured based on SUV greater than the mean SUV of BMTOT. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V10, V20, V30, and V40, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. RESULTS: Mean relative pre-post-therapy SUV reductions in BMTOT and BMACT were 27% and 38%, respectively. BMACT volume was significantly reduced after treatment (from 651.5 to 231.6 cm(3), respectively; P<.0001). BMACT V30 was significantly correlated with a reduction in BMACT SUV (R(2), 0.14; P<.001). The reduction in BMACT SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R(2), 0.27; P=.04) and at last follow-up (R(2), 0.25; P=.04). Different dosimetric parameters of BMTOT and BMACT correlated with long-term hematological outcome. CONCLUSIONS: The volumes of BMTOT and BMACT that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in proliferative BM SUV uptake translates into low WBC nadirs after treatment. These results suggest the potential of intensity modulated radiation therapy to spare BMTOT to reduce long-term hematological toxicity.
Resumo:
BACKGROUND: Whole pelvis intensity modulated radiotherapy (IMRT) is increasingly being used to treat cervical cancer aiming to reduce side effects. Encouraged by this, some groups have proposed the use of simultaneous integrated boost (SIB) to target the tumor, either to get a higher tumoricidal effect or to replace brachytherapy. Nevertheless, physiological organ movement and rapid tumor regression throughout treatment might substantially reduce any benefit of this approach. PURPOSE: To evaluate the clinical target volume - simultaneous integrated boost (CTV-SIB) regression and motion during chemo-radiotherapy (CRT) for cervical cancer, and to monitor treatment progress dosimetrically and volumetrically to ensure treatment goals are met. METHODS AND MATERIALS: Ten patients treated with standard doses of CRT and brachytherapy were retrospectively re-planned using a helical Tomotherapy - SIB technique for the hypothetical scenario of this feasibility study. Target and organs at risk (OAR) were contoured on deformable fused planning-computed tomography and megavoltage computed tomography images. The CTV-SIB volume regression was determined. The center of mass (CM) was used to evaluate the degree of motion. The Dice's similarity coefficient (DSC) was used to assess the spatial overlap of CTV-SIBs between scans. A cumulative dose-volume histogram modeled estimated delivered doses. RESULTS: The CTV-SIB relative reduction was between 31 and 70%. The mean maximum CM change was 12.5, 9, and 3 mm in the superior-inferior, antero-posterior, and right-left dimensions, respectively. The CTV-SIB-DSC approached 1 in the first week of treatment, indicating almost perfect overlap. CTV-SIB-DSC regressed linearly during therapy, and by the end of treatment was 0.5, indicating 50% discordance. Two patients received less than 95% of the prescribed dose. Much higher doses to the OAR were observed. A multiple regression analysis showed a significant interaction between CTV-SIB reduction and OAR dose increase. CONCLUSIONS: The CTV-SIB had important regression and motion during CRT, receiving lower therapeutic doses than expected. The OAR had unpredictable shifts and received higher doses. The use of SIB without frequent adaptation of the treatment plan exposes cervical cancer patients to an unpredictable risk of under-dosing the target and/or overdosing adjacent critical structures. In that scenario, brachytherapy continues to be the gold standard approach.
Resumo:
Background: Post-surgical management of stage I seminoma includes: surveillance with repeated CT-scans and treatment reserved for those who relapse, or adjuvant treatment with either immediate radiation therapy (RT) or carboplatin. The cancer specific survival is close to 100%. Cure without long-term sequelae of treatment is the aim. Our goal is to estimate the risk of radiation-induced secondary cancers (SC) death from for patients undergoing S, adjuvant RT or adjuvant carboplatin (AC).Materials and Methods: We measured organ doses from CT scans (3 phases each one) of a seminoma patient who was part of the active surveillance strategy and from a man undergoing adjuvant RT 20-Gy and a 30-Gy salvage RT treatment to the para-aortic area using helical Intensity Modulated RT (Tomotherapy®) with accurate delineation of organs at risk and a CTV to PTV expansion of 1 cm. Effective doses to organs in mSv were estimated according to the tissue-weighting factors recommendations of the International Commission on Radiological Protection 103 (Ann ICRP 2007). We estimated SC incidence and mortality for a 10,000 people population based on the excess absolute risk model from the Biological Effects of Ionizing Radiation (BEIR) VII (Health Risk of Exposure to Low Levels of Ionizing Radiation, NCR, The National Academies Press Washington, DC, 2006) assuming a seminoma diagnosis at age 30, a total life expectancy of 80 years.Results: The nominal risk for a fatal secondary cancers was calculated 1.5% for 15 abdominal CT scans, 14.8% for adjuvant RT (20 Gy paraaortic field) and 22.2% for salvage RT (30 Gy). The calculation assumed that the risk of relapse on surveillance and adjuvant AC was 15% and 4% respectively and that all patients were salvaged at relapse with RT. n CT abdomen/Pelvis = secondary cancer % RT Dose and % receiving treatment = secondary cancer % Total secondary cancer risk in % Active surveillance 15 = 1.5% 30 Gy in 15% of pts = 3.3% 4.8 Adjuvant carboplatin 7 = 0.7% 30 Gy in 4% of pts = 0.88% 1.58 Adjuvant radiotherapy 7 = 0.7% 20 Gy in 100% of pts = 14.8% 15.5Conclusions: These data suggest that: 1) Adjuvant radiotherapy is harmful and should not anymore be regarded as a standard option for seminoma stage I. 2) AC seems to be an option to reduce radiation induced cancers. Limitations: the study does not consider secondary cancers due to chemotherapy with AC (unknown). The use of BEIR VII for risk modeling with higher doses of RT needs to be validated.
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.