928 resultados para insect rearing
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect
Resumo:
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Resumo:
There are many biomechanical challenges that a female insect must meet to successfully oviposit and ensure her evolutionary success. These begin with selection of a suitable substrate through which the ovipositor must penetrate without itself buckling or fracturing. The second phase corresponds to steering and manipulating the ovipositor to deliver eggs at desired locations. Finally, the insect must retract her ovipositor fast to avoid possible predation and repeat this process multiple times during her lifetime. From a materials perspective, insect oviposition is a fascinating problem and poses many questions. Specifically, are there diverse mechanisms that insects use to drill through hard substrates without itself buckling or fracturing? What are the structure-property relationships in the ovipositor material? These are some of the questions we address with a model system consisting of a parasitoid fig wasp - fig substrate system. To characterize the structure of ovipositors, we use scanning electron microscopy with a detector to quantify the presence of transition elements. Our results show that parasitoid ovipositors have teeth like structures on their tips and contain high amounts of zinc as compared to remote regions. Sensillae are present along the ovipositor to aid detection of chemical species and mechanical deformations. To quantify the material properties of parasitoid ovipositors, we use an atomic force microscope and show that tip regions have higher modulus as compared to remote regions. Finally, we use videography to show that ovipositors buckle during oviposition and estimate the forces needed to cause substrate boring based on Euler buckling analysis. Such methods may be useful for the design of functionally graded surgical tools.
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.
Resumo:
Small size actuators (8 mm x 1 mm), IPMNC (RuO2/Nafion) and IPMNC (LbL/CNC) are studied for flapping at the frequency of insects and compared to Platinum IPMC-Pt. Flapping wing actuators based on IPMNC (RuO2/Nafion) are modeled with the size of three dragonfly species. To achieve maximum actuation performance with Sympetrum Frequens scale actuator with optimized Young's modulus, the effect of variation of thickness of electrode and Nafion region of Sympetrum Frequens scale actuator is studied. A trade-off in the electrode thickness and Young's modulus for dragonfly size IPMNC-RuO2/Nafion actuator is essential to achieve the desirable flapping performance.
Resumo:
1 page
Resumo:
A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.
Resumo:
ENGLISH: The anchoveta, Cetengraulis mysticetus (Günther), is an important bait fish used to capture tunas in the Eastern Tropical Pacific Ocean. Contributions to the early life history of this species in the Gulf of Panama were made by Simpson (1959), who was able to identify deductively the planktonic egg of the anchoveta from 10 other anchovy eggs concurrently present. He also reared these planktonic eggs in the laboratory and described the resultant larvae to the age of 48 hours after hatching. Because of the lack of differences among the anchovy larvae, this description does not permit the identification of anchoveta larvae from those of other engraulid species. Furthermore, while adult specimens are easily recognized, up to the present it has not been possible to extend the identification of the juvenile anchoveta to specimens smaller than about 25 mm. The purpose of this study, therefore, was to identify anchoveta from the time of hatching to about 25 mm. SPANISH: La anchoveta, Cetengraulis mysticetus (Günther), es un importante pez de carnada que se emplea en la captura de los atunes en el Océano Pacífico Oriental Tropical. Simpson (1959) logró identificar deductivamente el huevo planctónico de la anchoveta al separarlo de otros diez huevos de anchoas que se encuentran al mismo tiempo, contribuyendo de esta manera a conocer los primeros estados de la historia natural de esta especie en el Golfo de Panamá. El también estableció un criadero en el laboratorio con estos huevos planctónicos y describió las larvas resultantes hasta la edad de 48 horas después de la eclosión. Debido a que no hay diferencias entre las larvas de las anchoas, esta descripción no permite identificar las larvas de la anchoveta de las otras especies de engráulidos. Más aun, a pesar de que los especímenes adultos son fácilmente reconocibles, hasta ahora no ha sido posible identificar la anchoveta juvenil de menos de unos 25 mm. Consecuentemente, el propósito del presente estudio ha sido el de identificar al anchoveta desde el momento de la eclosión hasta que tiene unos 25 mm.
Resumo:
About 72 species of Sebastes (Family Scorpaenidae) are found along the eastern Pacific coast of North America, some of which are heavily exploited by both commercial and sport fisheries. Because of the large number of species, the identification of early life stages has progressed slowly. The objectives of this study were 1) to rear the larvae of four species of rockfish (Sebastes mystinus, S. carnatus, S. atrovirens, and S. rastrelliger); and 2) to describe the larvae using morphometric measurements, pigmentation patterns, and head spination. Pigmentation was the most useful feature for identification purposes. Two general patterns were found: 1) a short row of ventral midline melanophores on the tail, and none or very little postero-dorsal pigmentation (S. mystinus); and 2) complete ventral midline pigmentation on the tail, and anterior and postero-dorsal melanophores (S. carnatus, S. atrovirens, and S. rastrelliger). With the exception of very early stages of S. carnatus and S. atrovirens, these species can be readily identified. Morphometric proportions and head spination did not show major differences among species. Because of the great similarities found among species in this genus, descriptions from field studies are uncertain to some extent. Laboratory rearings, although difficult, can at least provide early larvae from known species which allow precise identification as well as an estimation ofvariability of characters (e.g., pigmentation) within and between broods.(PDF file contains 22 pages.)
Resumo:
10 p.
Resumo:
Fish which has been cured or are in the process of being cured by traditional methods are usually infested by insects, posing a real problem to traders and processors, especially in Nigeria. The effects of 0.03% actellic 50 EC solution and vegetable oil on insect infestion were studied using West African sardines, Sardinella maderensis. Actellic solution was more effective in combating insect infestation than vegetable oil. Appearance and perceived smoked fish flavour of fish treated with Actellic and vegetable oil differed (P<0.05), while taste was unaffected by treatment. Actellic 50 EC solution though effective, could be subject to abuse
Resumo:
One of the major problems in the mass production of sugpo is how to obtain a constant supply of fry. Since ultimately it is the private sector which should produce the sugpo fry to fill the needs of the industry, the Barangay Hatchery Project under the Prawn Program of the Aquaculture Department of SEAFDEC has scaled down the hatchery technology from large tanks to a level which can be adopted by the private sector, especially in the villages, with a minimum of financial and technical inputs. This guide to small-scale hatchery operations is expected to generate more enthusiasm among fish farmers interested in venturing into sugpo culture.
Resumo:
Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.