971 resultados para insect pathogenic fungi
Resumo:
A bananeira tem um elevado valor social e económico para Cabo Verde, desempenhando um papel fundamental na dieta alimentar das populações. Nos últimos anos a produtividade da cultura tem vindo a decair e de entre as causas responsáveis pelo declínio dos bananais incluem-se micoses. Com a finalidade de determinar o possível envolvimento de fungos nas doenças foliares fez-se o levantamento da micobiota associada a necroses foliares. Material foliar com lesões de diversos tipos foi recolhido em bananais de 10 localidades da Ilha de Santiago e observado ou colocado em câmara húmida sobre meio gelosado. As estruturas de fungos detectadas sobre as folhas foram montadas em lactofenol e utilizadas para identificação até ao nível da espécie, dos fungos registados, utilizando para o efeito critérios clássicos em sistemática micológica. Foram identificados 48 táxones, sendo 44 fungos mitospóricos e 4 fungos ascomicetas. Muitos dos fungos identificados não são considerados fitopatogénicos na bananeira, estando referidos como endófitos ou saprófitas na cultura. Os principais fungos patogénicos identificados foram Cladosporium musae, Colletotrichum gloeosporiodes, C. musae, Cordana musae, Deightoniella torulosa, Lasiodiplodia theobromae e Ramichloridium musae. A maioria das espécies apresentou larga distribuição nas zonas de produção amostradas.
Resumo:
The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogen.
Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.
Resumo:
In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.
Resumo:
Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.
Resumo:
Selected strains of fluorescent pseudomonads suppress various plant diseases caused by soil-borne pathogenic fungi, by a blend of several mechanisms including aggressive root colonization, antibiosis, competition for nutrients, induction of resistance in the plant, and enzymatic attack of the pathogen. These traits are amenable to genetic analysis and, therefore, to modification by genetic engineering. Biocontrol activities of Pseudomonas spp. have been enhanced in two ways: (i) by overexpression of traits known to involved in diseaese suppression, and (ii) by introduction of additional beneficial traits into strains having basal biocontrol activities. Under experimental conditions in microcosms, a number of genetically modified Pseudomonas strains have given promising results. It remains to be seen whether such strains will be superior to the best naturally occurring strains, applied singly or in combination, under greenhouse and field conditions.
Resumo:
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Resumo:
Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.
Resumo:
The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Deltagcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.
Resumo:
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Resumo:
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
Resumo:
Pseudomonas fluorescens CHA0 protects various crop plants against root diseases caused by pathogenic fungi. Among a range of exoproducts excreted by strain CHA0, the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) are particularly relevant to the strain's biocontrol potential. Here, we report on the characterization of MvaT and MvaV as novel regulators of biocontrol activity in strain CHA0. We establish the two proteins as further members of an emerging family of MvaT-like regulators in pseudomonads that are structurally and functionally related to the DNA-binding protein H-NS. In mvaT and mvaV in frame-deletion mutants of strain CHA0, PLT production was enhanced about four- and 1.5-fold, respectively, whereas DAPG production remained at wild-type levels. Remarkably, PLT production was increased up to 20-fold in an mvaT mvaV double mutant. DAPG biosynthesis was almost completely repressed in this mutant. The effects on antibiotic production could be confirmed by following expression of gfp-based reporter fusions to the corresponding biosynthetic genes. MvaT and MvaV also influenced levels of other exoproducts, motility, and physicochemical cell-surface properties to various extents. Compared with the wild type, mvaT and mvaV mutants had an about 20% reduced capacity (in terms of plant fresh weight) to protect cucumber from a root rot caused by Pythium ultimum. Biocontrol activity was nearly completely abolished in the double mutant Our findings indicate that MvaT and MvaV act together as further global regulatory elements in the complex network controlling expression of biocontrol traits in plant-beneficial pseudomonads.
Resumo:
The dermatophytes are a group of closely related fungi which are responsible for the great majority of superficial mycoses in humans and animals. Among various potential virulence factors, their secreted proteolytic activity attracts a lot of attention. Most dermatophyte-secreted proteases which have so far been isolated in vitro are neutral or alkaline enzymes. However, inspection of the recently decoded dermatophyte genomes revealed many other hypothetical secreted proteases, in particular acidic proteases similar to those characterized in Aspergillus spp. The validation of such genome predictions instigated the present study on two dermatophyte species, Microsporum canis and Arthroderma benhamiae. Both fungi were found to grow well in a protein medium at acidic pH, accompanied by extracellular proteolysis. Shotgun MS analysis of secreted protein revealed fundamentally different protease profiles during fungal growth in acidic versus neutral pH conditions. Most notably, novel dermatophyte-secreted proteases were identified at acidic pH such as pepsins, sedolisins and acidic carboxypeptidases. Therefore, our results not only support genome predictions, but demonstrate for the first time the secretion of acidic proteases by dermatophytes. Our findings also suggest the existence of different pathways of protein degradation into amino acids and short peptides in these highly specialized pathogenic fungi.
Resumo:
Dermatophytes are human and animal pathogenic fungi which cause cutaneous infections and grow exclusively in the stratum corneum, nails and hair. In a culture medium containing soy proteins as sole nitrogen source a substantial proteolytic activity was secreted by Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. This proteolytic activity was 55-75 % inhibited by o-phenanthroline, attesting that metalloproteases were secreted by all three species. Using a consensus probe constructed on previously characterized genes encoding metalloproteases (MEP) of the M36 fungalysin family in Aspergillus fumigatus, Aspergillus oryzae and M. canis, a five-member MEP family was isolated from genomic libraries of T. rubrum, T. mentagrophytes and M. canis. A phylogenetic analysis of genomic and protein sequences revealed a robust tree consisting of five main clades, each of them including a MEP sequence type from each dermatophyte species. Each MEP type was remarkably conserved across species (72-97 % amino acid sequence identity). The tree topology clearly indicated that the multiplication of MEP genes in dermatophytes occurred prior to species divergence. In culture medium containing soy proteins as a sole nitrogen source secreted Meps accounted for 19-36 % of total secreted protein extracts; characterization of protein bands by proteolysis and mass spectrometry revealed that the three dermatophyte species secreted two Meps (Mep3 and Mep4) encoded by orthologous genes.
Resumo:
Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.
Resumo:
We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC50 values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 µM), C. krusei (34 µM) and C. tropicalis (17 µM). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents.