977 resultados para inhibitory interneurons
Resumo:
Oxytocin is a neuropeptide that can reduce neophobia and improve social affiliation. In vitro, oxytocin induces a massive release of GABA from neurons in the lateral division of the central amygdala which results in inhibition of a subpopulation of peripherally projecting neurons in the medial division of the central amygdala (CeM). Common anxiolytics, such as diazepam, act as allosteric modulators of GABA(A) receptors. Because oxytocin and diazepam act on GABAergic transmission, it is possible that oxytocin can potentiate the inhibitory effects of diazepam if both exert their pre, - respectively postsynaptic effects on the same inhibitory circuit in the central amygdala. We found that in CeM neurons in which diazepam increased the inhibitory postsynaptic current (IPSC) decay time, TGOT (a specific oxytocin receptor agonist) increased IPSC frequency. Combined application of diazepam and TGOT resulted in generation of IPSCs with increased frequency, decay times as well as amplitudes. While individual saturating concentrations of TGOT and diazepam each decreased spontaneous spiking frequency of CeM neurons to similar extent, co-application of the two was still able to cause a significantly larger decrease. These findings show that oxytocin and diazepam act on different components of the same GABAergic circuit in the central amygdala and that oxytocin can facilitate diazepam effects when used in combination. This raises the possibility that neuropeptides could be clinically used in combination with currently used anxiolytic treatments to improve their therapeutic efficacy.
Resumo:
Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.
Resumo:
The elevation of intracellular cyclic AMP by phosphodiesterase (PDE)4 inhibitors in eosinophils is associated with inhibition of the activation and recruitment of these cells. We have previously shown that systemic treatment with the PDE4 inhibitor rolipram effectively inhibt eosinophil migration in guinea pig skin. In the present study we compare the oral potency and efficacy of the PDE4 inhibitors rolipram, RP 73401 and CDP 840 on allergic and PAF-induced eosinophil recruitment. Rolipram and RP 73401 were equally effective and potent when given by the oral route and much more active than the PDE4 inhibitor CDP 840. We suggest that this guinea pig model of allergic and mediator-induced eosinophil recruitment is both a sensitive and simple tool to test the efficacy and potency of PDE4 inhibitors in vivo.
Resumo:
The SV channel encoded by the TPC1 gene represents a Ca(2+)- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca(2+)-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca(2+) before SV channel activity vanishes and K(+) homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.
Resumo:
Recent studies have led to the discovery of a mediator that acts as an endogenous counter-regulator of glucocorticoid action within the immune system. Isolated as a product of anterior pituitary cells, this protein was found to have the sequence of macrophage migration inhibitory factor (MIF), one of the first cytokine activities to be described. Macrophages and T cells release MIF in response both to various inflammatory stimuli and upon incubation with low concentrations of glucocorticoids. The glucocorticoid-induced secretion of MIF is tightly regulated and decreases at high, anti-inflammatory steroid concentrations. Once secreted, MIF "overrides" the anti-inflammatory and immunosuppressive effects of steroids on macrophage and T-cell cytokine production. The physiological role of MIF thus appears to be to counter-balance steroid inhibition of the inflammatory response. Anti-MIF antibodies fully protect animals from experimentally induced gram-negative or gram-positive septic shock, an effect that may be the result of the increased anti-inflammatory effects of glucocorticoids after neutralization of endogenous MIF. Anti-MIF therapeutic strategies are presently under development and may prove to be a means to modulate cytokine production in septic shock as well as in other inflammatory disease states.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.
Resumo:
For more than a quarter of a century, macrophage migration inhibitory factor (MIF) has been a mysterious cytokine. In recent years, MIF has assumed an important role as a pivotal regulator of innate immunity. MIF is an integral component of the host antimicrobial alarm system and stress response that promotes the pro-inflammatory functions of immune cells. A rapidly increasing amount of literature indicates that MIF is implicated in the pathogenesis of sepsis, and inflammatory and autoimmune diseases, suggesting that MIF-directed therapies might offer new treatment opportunities for human diseases in the future.
Resumo:
Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).
Resumo:
Motor inhibitory control plays a central role in adaptive behaviors during the entire lifespan. Inhibitory motor control refers to the ability to stop all (global) or a part (selective) of a planned or ongoing motor action. Although the neural processing underlying the global inhibitory control has received much attention from cognitive neuroscientists, brain modulations that occur during selective inhibitory motor control remain unknown. The aim of the present thesis is to investigate the spatio-temporal brain processes of selective inhibitory motor control in young and old adults using high-density electroencephalography. In the first part, we focus on early (preparatory period) spatio-temporal brain processes involved in selective and global inhibitory control in young (study I) and old adults (study II) using a modified Go/No-go task. In study I, we distinguished global from selective inhibition in the early attentional stage of inhibitory control and provided neurophysiological evidence in favor of the combination model. In study II, we showed an under-recruitment of neural resources associated with preservation of performance in old adults during selective inhibition, suggesting efficient cerebral and behavioral adaptations to environmental changes. In the second part, we investigate beta oscillations in the late (post-execution period) spatio-temporal brain processes of selective inhibition during a motor Switching task (i.e., tapping movement from bimanual to unimanual) in young (study III) and old adults (study IV). In study III, we identified concomitant beta synchronization related (i) to sensory reafference processes, which enabled the stabilization of the movement that was perturbed after switching, and (ii) to active inhibition processes that prevented movement of the stopping hand. In study IV, we demonstrated a larger beta synchronization in frontal and parietal regions in old adults compared to young adults, suggesting age-related brain modulations in active inhibition processes. Apart from contributing to a basic understanding of the electrocortical dynamics underlying inhibitory motor control, the findings of the present studies contribute to knowledge regarding the further establishment of specific trainings with aging. -- Le contrôle de l'inhibition motrice joue un rôle central dans les adaptations comportementales quel que soit l'âge. L'inhibition motrice se réfère à la capacité à arrêter entièrement (globale) ou en partie (sélective) une action motrice planifiée ou en cours. Bien que les processus neuronaux sous-jacents de l'inhibition globale aient suscité un grand intérêt auprès des neurosciences cognitives, les modulations cérébrales dans le contrôle de l'inhibition motrice sélective sont encore peu connues. Le but de cette thèse est d'étudier les processus cérébraux spatio-temporels du contrôle de l'inhibition motrice sélective chez les adultes jeunes et âgés en utilisant l'électroencéphalogramme à haute densité. Dans la première partie, nous comparons les processus cérébraux spatio-temporels précoces (préparation motrice) de l'inhibition sélective et globale chez des adultes jeunes (étude I) et âgés (étude II) en utilisant une tâche Go/No-go modifiée. Dans l'étude I, nous avons distingué l'inhibition globale et sélective au niveau des processus attentionnels précoces du contrôle de l'inhibition et nous avons apporté des preuves neurophysiologiques de l'existence d'un modèle de combinaison. Dans l'étude II, nous avons montré une sous-activation neuronale associée à un maintien de la performance dans l'inhibition sélective chez les adultes âgés, suggérant des adaptations cérébrales et comportementales aux contraintes environnementales. Dans la seconde partie, nous examinons les processus cérébraux spatio-temporels tardifs (post-exécution motrice) de l'inhibition sélective pendant une tâche de Switching (tapping bimanuel vers un tapping unimanuel) chez des adultes jeunes (étude III) et âgés (étude IV). Dans l'étude III, nous avons distingué des synchronisations beta liées (i) au traitement des réafférences sensorielles permettant de stabiliser le mouvement perturbé après le switching, et (ii) aux processus d'inhibition active afin d'empêcher les mouvements de la main arrêtée. Dans l'étude IV, cette synchronisation beta était plus forte dans les régions frontales et pariétales chez les âgés par rapport aux jeunes adultes suggérant des modulations cérébrales de l'inhibition active avec l'âge. Outre la contribution fondamentale sur la compréhension des dynamiques électrocorticales dans le contrôle de l'inhibition motrice, les résultats de ces études contribuent à développer les connaissances pour la mise en place de programmes d'entraînements adaptés aux personnes âgées.
Resumo:
Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.
Resumo:
The engagement of inhibitory receptors specific for major histocompatibility complex class I (MHC-I) molecules educates natural killer (NK) cells, meaning the improvement of the response of activation receptors to subsequent stimulation. It is not known whether inhibitory MHC-I receptors educate only NK cells or whether they improve the responsiveness of all cell types, which express them. To address this issue, we analyzed the expression of inhibitory MHC-I receptors on intestinal intraepithelial lymphocytes (iIELs) and show that T-cell receptor (TCR)-αβ CD8αα iIELs express multiple inhibitory receptors specific for MHC-I molecules, including CD94/NKG2A, Ly49A, and Ly49G2. However, the presence of MHC-I ligand for these receptors did not improve the response of iIELs to activation via the TCR. The absence of iIEL education by MHC-I receptors was not related to a lack of inhibitory function of these receptors in iIELs and a failure of these receptors to couple to the TCR. Thus, unlike NK cells, iIELs do not undergo an MHC-I-guided education process. These data suggest that education is an NK cell-specific function of inhibitory MHC-I receptors.
Resumo:
Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.
Resumo:
Gene expression-based prediction of genomic copy number aberrations in the chromosomal region 12q13 to 12q15 that is flanked by MDM2 and CDK4 identified Wnt inhibitory factor 1 (WIF1) as a candidate tumor suppressor gene in glioblastoma. WIF1 encodes a secreted Wnt antagonist and was strongly downregulated in most glioblastomas as compared with normal brain, implying deregulation of Wnt signaling, which is associated with cancer. WIF1 silencing was mediated by deletion (7/69, 10%) or epigenetic silencing by promoter hypermethylation (29/110, 26%). Co-amplification of MDM2 and CDK4 that is present in 10% of glioblastomas was associated in most cases with deletion of the whole genomic region enclosed, including the WIF1 locus. This interesting pathogenetic constellation targets the RB and p53 tumor suppressor pathways in tandem, while simultaneously activating oncogenic Wnt signaling. Ectopic expression of WIF1 in glioblastoma cell lines revealed a dose-dependent decrease of Wnt pathway activity. Furthermore, WIF1 expression inhibited cell proliferation in vitro, reduced anchorage-independent growth in soft agar, and completely abolished tumorigenicity in vivo. Interestingly, WIF1 overexpression in glioblastoma cells induced a senescence-like phenotype that was dose dependent. These results provide evidence that WIF1 has tumor suppressing properties. Downregulation of WIF1 in 75% of glioblastomas indicates frequent involvement of aberrant Wnt signaling and, hence, may render glioblastomas sensitive to inhibitors of Wnt signaling, potentially by diverting the tumor cells into a senescence-like state.
Resumo:
The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.