983 resultados para industry concentration


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Study initiated by the Research Dept. of the League for Industrial Democracy. cf.Pref.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is based upon a case study of the adoption of digital, electronic, microprocessor-based control systems by Albright & Wilson Limited - a UK chemical producer. It offers an explanation of the company's changing technology policy between 1978 and 1981, by examining its past development, internal features and industrial environment. Part One of the thesis gives an industry-level analysis which relates the development of process control technology to changes in the economic requirements of production . The rapid diffusion of microcomputers and other microelectronic equipment in the chemical industry is found to be a response to general need to raise the efficiency of all processes, imposed by the economic recession following 1973. Part Two examines the impaot of these technical and eoonomic ohanges upon Albright & Wilson Limited. The company's slowness in adopting new control technology is explained by its long history in which trends are identified whlich produced theconservatism of the 1970s. By contrast, a study of Tenneco Incorporated, a much more successful adoptor of automating technology, is offered with an analysis of the new technology policy of adoption of such equipment which it imposed upon Albright & Wilson, following the latter's takeover by Tenneco in 1978. Some indications of the consequences by this new policy of widespread adoptions of microprocessor-based control equipment are derived from a study of the first Albright & Wilson plant to use such equipment. The thesis concludes that companies which fail to adopt rapidly the new control technology may not survive in the recessionary environment, the long- established British companies may lack the flexibility to make such necessary changes and that multi-national companies may have an important role jn the planned transfer and adoption of new production technology through their subsidiaries in the UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adults of a phosphine-resistant strain of Sitophilus oryzae (L) were exposed to constant phosphine concentrations of 0.0035-0.9 mg litre(-1) for periods of between 20 and 168 h at 25 °C, and the effects of time and concentration on mortality were quantified. Adults were also exposed to a series of treatments lasting 48, 72 or 168 h at 25 °C, during which the concentration of phosphine was varied. The aim of this study was to determine whether equations from experiments using constant concentrations could be used to predict the efficacy of changing phosphine concentrations against adults of S oryzae. A probit plane without interaction, in which the logarithms of time (t) and concentration (C) were variables, described the effects of concentration and time on mortality in experiments with constant concentrations. A derived equation of the form C^nt = k gave excellent predictions of toxicity when applied to data from changing concentration experiments. The results suggest that for resistant S oryzae adults there is nothing inherently different between constant and changing concentration regimes, and that data collected from fixed concentrations can be used to develop equations for predicting mortality in fumigations in which phosphine concentration changes. This approach could simplify the prediction of efficacy of typical fumigations in which concentrations tend to rise and then fall over a period of days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The psocid Liposcelis bostrychophila Badonnel, is a widespread, significant pest of stored commodities, has developed strong resistance to phosphine, the major grain disinfestant. The aim was to develop effective fumigation protocols to control this resistant pest. RESULTS: Time to population extinction of all life stages (TPE) in days was evaluated at a series of phosphine concentrations and temperatures at two relative humidities. Regression analysis showed that temperature, concentration and relative humidity all contributed significantly to describing TPE (P < 0.001, R2 = 0.95), with temperature being the dominant variable, accounting for 74.4% of the variation. Irrespective of phosphine concentration, TPE was longer at lower temperatures and high humidity (70% RH) and shorter at higher temperatures and low humidity (55% RH). At any concentration of phosphine, a combination of higher temperature and lower humidity provides the shortest fumigation period to control resistant L. bostrychophila. For example, 19 and 11 days of fumigation are required at 15 °C and 70% RH at 0.1 and 1.0 mg L-1 of phosphine respectively, whereas only 4 and 2 days are required at 35 °C and 55% RH for the same respective concentrations. CONCLUSIONS: The developed fumigation protocols will provide industry with flexibility in application of phosphine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here.Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH.Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is about the challenges of learning in the creation and implementation of new sustainable technologies. The system of biogas production in the Programme of Sustainable Swine Production (3S Programme) conducted by the Sadia food processing company in Santa Catarina State, Brazil, is used as a case example for exploring the challenges, possibilities and obstacles of learning in the use of biogas production as a way to increase the environmental sustainability of swine production. The aim is to contribute to the discussion about the possibilities of developing systems of biogas production for sustainability (BPfS). In the study I develop hypotheses concerning the central challenges and possibilities for developing systems of BPfS in three phases. First, I construct a model of the network of activities involved in the BP for sustainability in the case study. Next, I construct a) an idealised model of the historically evolved concepts of BPfS through an analysis of the development of forms of BP and b) a hypothesis of the current central contradictions within and between the activity systems involved in BP for sustainability in the case study. This hypothesis is further developed through two actual empirical analyses: an analysis of the actors senses in taking part in the system, and an analysis of the disturbance processes in the implementation and operation of the BP system in the 3S Programme. The historical analysis shows that BP for sustainability in the 3S Programme emerged as a feasible solution for the contradiction between environmental protection and concentration, intensification and specialisation in swine production. This contradiction created a threat to the supply of swine to the food processing company. In the food production activity, the contradiction was expressed as a contradiction between the desire of the company to become a sustainable company and the situation in the outsourced farms. For the swine producers the contradiction was expressed between the contradictory rules in which the market exerted pressure which pushed for continual increases in scale, specialisation and concentration to keep the production economically viable, while the environmental rules imposed a limit to this expansion. Although the observed disturbances in the biogas system seemed to be merely technical and localised within the farms, the analysis proposed that these disturbances were formed in and between the activity systems involved in the network of BPfS during the implementation. The disturbances observed could be explained by four contradictions: a) contradictions between the new, more expanded activity of sustainable swine production and the old activity, b) a contradiction between the concept of BP for carbon credits and BP for local use in the BPfS that was implemented, c) contradictions between the new UNFCCC1 methodology for applying for carbon credits and the small size of the farms, and d) between the technologies of biogas use and burning available in the market and the small size of the farms. The main finding of this study relates to the zone of proximal development (ZPD) of the BPfS in Sadia food production chain. The model is first developed as a general model of concepts of BPfS and further developed here to the specific case of the BPfS in the 3S Programme. The model is composed of two developmental dimensions: societal and functional integration. The dimension of societal integration refers to the level of integration with other activities outside the farm. At one extreme, biogas production is self-sufficient and highly independent and the products of BP are consumed within the farm, while at the other extreme BP is highly integrated in markets and networks of collaboration, and BP products are exchanged within the markets. The dimension of functional integration refers to the level of integration between products and production processes so that economies of scope can be achieved by combining several functions using the same utility. At one extreme, BP is specialised in only one product, which allows achieving economies of scale, while at the other extreme there is an integrated production in which several biogas products are produced in order to maximise the outcomes from the BP system. The analysis suggests that BP is moving towards a societal integration, towards the market and towards a functional integration in which several biogas products are combined. The model is a hypothesis to be further tested through interventions by collectively constructing the new proposed concept of BPfS. Another important contribution of this study refers to the concept of the learning challenge. Three central learning challenges for developing a sustainable system of BP in the 3S Programme were identified: 1) the development of cheaper and more practical technologies of burning and measuring the gas, as well as the reduction of costs of the process of certification, 2) the development of new ways of using biogas within farms, and 3) the creation of new local markets and networks for selling BP products. One general learning challenge is to find more varied and synergic ways of using BP products than solely for the production of carbon credits. Both the model of the ZPD of BPfS and the identified learning challenges could be used as learning tools to facilitate the development of biogas production systems. The proposed model of the ZPD could be used to analyse different types of agricultural activities that face a similar contradiction. The findings could be used in interventions to help actors to find their own expansive actions and developmental projects for change. Rather than proposing a standardised best concept of BPfS, the idea of these learning tools is to facilitate the analysis of local situations and to help actors to make their activities more sustainable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the occupational hazards within the tanning industry caused by contaminated dust. A qualitative assessment of the risk of human exposure to dust was made throughout a commercial Kenyan tannery. Using this information, high-risk points in the processing line were identified and dust sampling regimes developed. An optical set-up using microscopy and digital imaging techniques was used to determine dust particle numbers and size distributions. The results showed that chemical handling was the most hazardous (12 mg m(-3)). A Monte Carlo method was used to estimate the concentration of the dust in the air throughout the tannery during an 8 h working day. This showed that the high-risk area of the tannery was associated with mean concentrations of dust greater than the UK Statutory Instrument 2002 No. 2677. stipulated limits (exceeding 10 mg m(-3) (Inhalable dust limits) and 4 mg m(-3) (Respirable dust limits). This therefore has implications in terms of provision of personal protective equipment (PPE) to the tannery workers for the mitigation of occupational risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vida da sociedade atual é dependente dos recursos fósseis, tanto a nível de energia como de materiais. No entanto, tem-se verificado uma redução das reservas destes recursos, ao mesmo tempo que as necessidades da sociedade continuam a aumentar, tornando cada vez mais necessárias, a produção de biocombustíveis e produtos químicos. Atualmente o etanol é produzido industrialmente a partir da cana-de-açúcar e milho, matérias-primas usadas na alimentação humana e animal. Este fato desencadeou o aumento de preços dos alimentos em todo o mundo e, como consequência, provocou uma série de distúrbios sociais. Os subprodutos industriais, recursos independentes das cadeias alimentares, têm-se posicionado como fonte de matérias-primas potenciais para bioprocessamento. Neste sentido, surgem os subprodutos gerados em grande quantidade pela indústria papeleira. Os licores de cozimento da madeira ao sulfito ácido (SSLs) são uma matériaprima promissora, uma vez que durante este processo os polissacarídeos da madeira são hidrolisados originando açúcares fermentáveis. A composição dos SSLs varia consoante o tipo de madeira usada no processo de cozimento (de árvores resinosas, folhosas ou a mistura de ambas). O bioprocessamento do SSL proveniente de folhosas (HSSL) é uma metodologia ainda pouco explorada. O HSSL contém elevadas concentrações de açúcares (35-45 g.L-1), na sua maioria pentoses. A fermentação destes açúcares a bioetanol é ainda um desafio, uma vez que nem todos os microrganismos são capazes de fermentar as pentoses a etanol. De entre as leveduras capazes de fermentar naturalmente as pentoses, destaca-se a Scheffersomyces stipitis, que apresenta uma elevada eficiência de fermentação. No entanto, o HSSL contém também compostos conhecidos por inibirem o crescimento de microrganismos, dificultando assim o seu bioprocessamento. Neste sentido, o principal objetivo deste trabalho foi a produção de bioetanol pela levedura S. stipitis a partir de HSSL, resultante do cozimento ao sulfito ácido da madeira de Eucalyptus globulus. Para alcançar este objetivo, estudaram-se duas estratégias de operação diferentes. Em primeiro lugar estudou-se a bio-desintoxicação do HSSL com o fungo filamentoso Paecilomyces variotii, conhecido por crescer em resíduos industriais. Estudaram-se duas tecnologias fermentativas diferentes para a biodesintoxicação do HSSL: um reator descontínuo e um reator descontínuo sequencial (SBR). A remoção biológica de inibidores do HSSL foi mais eficaz quando se usou o SBR. P. variotii assimilou alguns inibidores microbianos como o ácido acético, o ácido gálico e o pirogalol, entre outros. Após esta desintoxicação, o HSSL foi submetido à fermentação com S. stipitis, na qual foi atingida a concentração máxima de etanol de 2.36 g.L-1 com um rendimento de 0.17 g.g-1. P. variotti, além de desintoxicar o HSSL, também é útil na produção de proteína microbiana (SCP) para a alimentação animal pois, a sua biomassa é rica em proteína. O estudo da produção de SCP por P. variotii foi efetuado num SBR com HSSL sem suplementos e suplementado com sais. A melhor produção de biomassa foi obtida no HSSL sem adição de sais, tendo-se obtido um teor de proteína elevado (82,8%), com uma baixa concentração de DNA (1,1%). A proteína continha 6 aminoácidos essenciais, mostrando potencial para o uso desta SCP na alimentação animal e, eventualmente, em nutrição humana. Assim, a indústria papeleira poderá integrar a produção de bioetanol após a produção SCP e melhorar a sustentabilidade da indústria de pastas. A segunda estratégia consistiu em adaptar a levedura S. stipitis ao HSSL de modo a que esta levedura conseguisse crescer e fermentar o HSSL sem remoção de inibidores. Operou-se um reator contínuo (CSTR) com concentrações crescentes de HSSL, entre 20 % e 60 % (v/v) durante 382 gerações em HSSL, com uma taxa de diluição de 0.20 h-1. A população adaptada, recolhida no final do CSTR (POP), apresentou uma melhoria na fermentação do HSSL (60 %), quando comparada com a estirpe original (PAR). Após esta adaptação, a concentração máxima de etanol obtida foi de 6.93 g.L-1, com um rendimento de 0.26 g.g-1. POP possuía também a capacidade de metabolizar, possivelmente por ativação de vias oxidativas, compostos derivados da lenhina e taninos dissolvidos no HSSL, conhecidos inibidores microbianos. Por fim, verificou-se também que a pré-cultura da levedura em 60 % de HSSL fez com que a estirpe PAR melhorasse o processo fermentativo em HSSL, em comparação com o ensaio sem pré-cultura em HSSL. No entanto, no caso da estirpe POP, o seu metabolismo foi redirecionado para a metabolização dos inibidores sendo que a produção de etanol decresceu.