949 resultados para immobilized metal-ion affinity chromatography
Resumo:
We report here the construction of a vector derived from pET3-His and pRSET plasmids for the expression and purification of recombinant proteins in Escherichia coli based on T7 phage RNA polymerase. The resulting pAE plasmid combined the advantages of both vectors: small size (pRSET), expression of a short 6XHis tag at N-terminus (pET3-His) and a high copy number of plasmid (pRSET). The small size of the vector (2.8 kb) and the high copy number/cell (200-250 copies) facilitate the subcloning and sequencing procedures when compared to the pET system (pET3-His, 4.6 kb and 40-50 copies) and also result in high level expression of recombinant proteins (20 mg purified protein/liter of culture). In addition, the vector pAE enables the expression of a fusion protein with a minimal amino-terminal hexa-histidine affinity tag (a tag of 9 amino acids using XhoI restriction enzyme for the 5'cloning site) as in the case of pET3-His plasmid and in contrast to proteins expressed by pRSET plasmids (a tag of 36 amino acids using BamHI restriction enzyme for the 5'cloning site). Thus, although proteins expressed by pRSET plasmids also have a hexa-histidine tag, the fusion peptide is much longer and may represent a problem for some recombinant proteins.
Resumo:
Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.
Resumo:
The construction of a hexahistidine-tagged version of the B fragment of diphtheria toxin (DTB) represents an important step in the study of the biological properties of DTB because it will permit the production of pure recombinant DTB (rDTB) in less time and with higher yields than currently available. In the present study, the genomic DNA of the Corynebacterium diphtheriae Park Williams 8 (PW8) vaccine strain was used as a template for PCR amplification of the dtb gene. After amplification, the dtb gene was cloned and expressed in competent Escherichia coli M15™ cells using the expression vector pQE-30™. The lysate obtained from transformed E. coli cells containing the rDTB PW8 was clarified by centrifugation and purified by affinity chromatography. The homogeneity of the purified rDTB PW8 was confirmed by immunoblotting using mouse polyclonal anti-diphtheria toxoid antibodies and the immune response induced in animals with rDTB PW8 was evaluated by ELISA and dermonecrotic neutralization assays. The main result of the present study was an alternative and accessible method for the expression and purification of immunogenically reactive rDTB PW8 using commercially available systems. Data also provided preliminary evidence that rabbits immunized with rDTB PW8 are able to mount a neutralizing response against the challenge with toxigenic C. diphtheriae.
Resumo:
Polymer supports and polymeric complexes are highly versatile and they are successfully employed as efficient reagents, substrates and catalysts. Recently there observed a growing interest in the synthesis of tailor-made polymer supports and functionalized polymers for the preparation of metal complexes for various applications. They have the combination of properties due to the macromolecular structure as well as due to the reactivity of the functional group. An interesting feature of functional polymers is their affinity towards metal ions. Therefore the synthesis, characterization and application of such polymeric complexes have great scientific and analytical importance. In this investigation three series of polymeric complexes of transition metal ions are prepared from three schiff bases. All the complexes and polymeric schiff bases were characterized by analytical, spectral and thermal methods The thesis consist of six chapters. The first chapter contains an introduction and a brief review on application of polymer supports, polymer supported ligands and complexes. The second chapter gives the details of reagents and instruments used and the procedure adopted for the preparation of ligands and complexes. The third chapter explains the methods employed for characterization and the results are also discussed. The fourth chapter gives a detailed study of metal ion removal using ligands whereas the fifth chapter describes the development of the Cu” ion sensor electrode. The sixth chapter is the summary of the thesis and references are presented at the end.
Resumo:
Ion-exchange chromatography has emerged as a practical and rapid method of separation and analysis. A review of literature on chelating resins reveals that eventhough investigations on highly selective resins are intensively pursued from early 1940s, such resins are still insufficiently used in analytical chemistry and process technology. This is mainly due to the complexity of their synthesis and high cost. In this context, it is worthwhile to develop novel chelating resins which are specific or at least selective towards a group of metal ions. Synthesis, characterization and analytical applications of two such resins are presented in this thesis.
Resumo:
One Kunitz-type trypsin inhibitors (PmTI) was purified from Piptadenia moniliformis seeds, a tree of the sub-family Mimosoideae, by TCA precipitation, affinity chromatography on immobilized trypsin-Sepharose, DEAE cellulose (ion exchange) and Superose 12 (molecular exclusion) column FPLC/AKTA. The inhibitor has Mr of 25 kDa by SDS-PAGE and chromatography molecular exclusion. The N-terminal sequence of this inhibitor showed high homology with other family Kunitz inhibitors. This also stable variations in temperature and pH and showed a small decrease in its activity when incubated with DDT in the concentration of 100mM for 120 minutes. The inhibition of trypsin by PmTI was competitive, with Ki of 1.57 x10-11 M. The activity of trypsin was effectively inhibited by percentage of inhibition of 100%, among enzymes tested, was not detected inhibition for the bromelain, was weak inhibitor of pancreatic elastase (3.17% of inhibition) and inhibited by 76.42% elastase of neutrophils, and inhibited in a moderate, chymotrypsin and papain with percentage of inhibition of 42.96% and 23.10% respectively. In vitro assays against digestive proteinases from Lepidoptera, Diptera and Coleoptera pests were carried out. Several degrees of inhibition were found. For Anthonomus grandis and Ceratitis capitata the inhibition was 89.93% and 70.52%, respectively, and the enzymes of Zabrotes subfasciatus and Callosobruchus maculatus were inhibited by 5.96% and 9.41%, respectively, and the enzymes of Plodia. interpunctella and Castnia licus were inhibited by 59.94% and 23.67, respectively. In vivo assays, was observed reduction in the development of larvae in 4rd instar of C. capitata, when PmTI was added to the artificial diet, getting WD50 and LD50 of 0.30% and 0.33%, respectively. These results suggest that this inhibitor could be a strong candidate to plant management programs cross transgenic
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A CDP-diacylglycerol dependent phosphatidylserine synthase was detected in three species of gram-positive bacilli, viz. Bacillus licheniformis, Bacillus subtilis and Bacillus megaterium; the enzyme in B. licheniformis was studied in detail. The subcellular distribution experiments in cell-free extracts of B. licheniformis using differential centrifugation, sucrose gradient centrifugation and detergent solubilization showed the phosphatidylserine synthase to be tightly associated with the membrane. The enzyme was shown to have an absolute requirement for divalent metal ion for activity with a strong preference for manganese. The enzyme activity was completely dependent upon the addition of CDP-diacylglycerol to the assay system; the role of the liponucleotide was rigorously shown to be that of phosphatidyl donor and not just a detergent-like stimulator. This enzyme was then solubilized from B. licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue-dextran Sepharose. The purified preparation showed a single band with an apparent minimum molecular weight of 53,000 when subjected to SDS polyacrylamide gel electrophoresis. The preparation was free of any phosphatidylglycerophosphate synthase, CDP-diacylglycerol hydrolase and phosphatidylserine hydrolase activities. The utilization of substrates and formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential BiBi reaction as opposed to the ping-pong mechanism exhibited by the well studied phosphatidylserine synthase of Escherichia coli. Proteolytic digestion of the enzyme yielded a smaller active form of the enzyme (41,000 daltons) which appears to be less prone to aggregation.^ This has been the first detailed study in a well-defined bacillus species of the enzyme catalyzing the CDP-diacylglycerol-dependent formation of phosphatidylserine; this reaction is the first committed step in the biosynthetic pathway to the major membrane component, phosphatidylethanolamine. Further study of this enzyme may lead to understanding of new mechanisms of phosphatidyl transfer and novel modes of control of phospholipid biosynthetic enzymes. ^
Resumo:
Attempts have been made in this dissertation to develop a purified antigen with high sensitivity and specificity for diagnosis of Schistosoma mansoni (Sm) infection by using the hybridoma technique.^ Spleen cells, obtained from mice immunized by infection with Sm and boosted by cercarial antigens, or by injection of circulating antigen (CA) in serum from infected mice, were fused with Sp2/0 myeloma cells. The active infection resulted a higher number of hybridomas (100%) than by CA (20%), and higher levels of antibody reactivity as measured by ELISA.^ The IgM and IgG monoclonal antibodies (MCAbs) were purified respectively by gel filtration, DE 52 ion exchange column and proteinase A affinity column. The cercarial and egg antigens were purified by affinity chromatography through MCAb/affi-gel column. The reactivity of the purified antigens were then monitored by ELISA, SDS-PAGE silver stain and EITB.^ The respective MCAbs recognized varying antigenic determinants (AD) present in adult, cercaria and egg stages. By EITB the MCAbs IgM and IgG, when reacted with nine antigens from the various stages, revealed identical bands, suggesting that the two MCAb classes originated from identical AD. By ELISA and COPT, the MCAbs from thirteen cell lines gave same results. But by CHR, two MCAbs showed negative results while eleven other MCAbs showed strong positive. It is assumed that the AD in the immunogen that ilicited the MCAbs were immunochemically closely related.^ One egg purified by immunoaffinity indicated that the epitopes recognized by MCAb were present on four antigenic components with molecular weights (Mr) of approximately 19, 25, 60 and >224 kd, respectively. By EITB the Mr 19 doublet appeared to be species specific; the Mr 25 kd genus specific. They reacted with mouse serum from 13-16 weeks after infection. In monkey serum Mr 19 doublet appeared 8-10 weeks after infection and disappeared at 8-12 weeks after Droncit treatment, paralleled to the disappearance of fecal egg. The Mr 60 and >224 kd bands were also demonstrated with S. japonicum, S. haematobium and Trichinella spiralis infection sera and may be the cause of cross-reaction in conventional serological test. ^
Resumo:
Nicotianamine (NA) occurs in all plants and chelates metal cations, including FeII, but reportedly not FeIII. However, a comparison of the FeII and ZnII affinity constants of NA and various FeIII-chelating aminocarboxylates suggested that NA should chelate FeIII. High-voltage electrophoresis of the FeNA complex formed in the presence of FeIII showed that the complex had a net charge of 0, consistent with the hexadentate chelation of FeIII. Measurement of the affinity constant for FeIII yielded a value of 1020.6, which is greater than that for the association of NA with FeII (1012.8). However, capillary electrophoresis showed that in the presence of FeII and FeIII, NA preferentially chelates FeII, indicating that the FeIINA complex is kinetically stable under aerobic conditions. Furthermore, Fe complexes of NA are relatively poor Fenton reagents, as measured by their ability to mediate H2O2-dependent oxidation of deoxyribose. This suggests that NA will have an important role in scavenging Fe and protecting the cell from oxidative damage. The pH dependence of metal ion chelation by NA and a typical phytosiderophore, 2′-deoxymugineic acid, indicated that although both have the ability to chelate Fe, when both are present, 2′-deoxymugineic acid dominates the chelation process at acidic pH values, whereas NA dominates at alkaline pH values. The consequences for the role of NA in the long-distance transport of metals in the xylem and phloem are discussed.
Resumo:
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Resumo:
The concentration of protein in a solution has been found to have a significant effect on ion binding affinity. It is well known that an increase in ionic strength of the solvent medium by addition of salt modulates the ion-binding affinity of a charged protein due to electrostatic screening. In recent Monte Carlo simulations, a similar screening has been detected to arise from an increase in the concentration of the protein itself. Experimental results are presented here that verify the theoretical predictions; high concentrations of the negatively charged proteins calbindin D9k and calmodulin are found to reduce their affinity for divalent cations. The Ca(2+)-binding constant of the C-terminal site in the Asn-56 --> Ala mutant of calbindin D9k has been measured at seven different protein concentrations ranging from 27 microM to 7.35 mM by using 1H NMR. A 94% reduction in affinity is observed when going from the lowest to the highest protein concentration. For calmodulin, we have measured the average Mg(2+)-binding constant of sites I and II at 0.325, 1.08, and 3.25 mM protein and find a 13-fold difference between the two extremes. Monte Carlo calculations have been performed for the two cases described above to provide a direct comparison of the experimental and simulated effects of protein concentration on metal ion affinities. The overall agreement between theory and experiment is good. The results have important implications for all biological systems involving interactions between charged species.
Resumo:
We have inserted a fourth protein ligand into the zinc coordination polyhedron of carbonic anhydrase II (CAII) that increases metal affinity 200-fold (Kd = 20 fM). The three-dimensional structures of threonine-199-->aspartate (T199D) and threonine-199-->glutamate (T199E) CAIIs, determined by x-ray crystallographic methods to resolutions of 2.35 Angstrum and 2.2 Angstrum, respectively, reveal a tetrahedral metal-binding site consisting of H94, H96, H119, and the engineered carboxylate side chain, which displaces zinc-bound hydroxide. Although the stereochemistry of neither engineered carboxylate-zinc interaction is comparable to that found in naturally occurring protein zinc-binding sites, protein-zinc affinity is enhanced in T199E CAII demonstrating that ligand-metal separation is a significant determinant of carboxylate-zinc affinity. In contrast, the three-dimensional structure of threonine-199-->histidine (T199H) CAII, determined to 2.25-Angstrum resolution, indicates that the engineered imidazole side chain rotates away from the metal and does not coordinate to zinc; this results in a weaker zinc-binding site. All three of these substitutions nearly obliterate CO2 hydrase activity, consistent with the role of zinc-bound hydroxide as catalytic nucleophile. The engineering of an additional protein ligand represents a general approach for increasing protein-metal affinity if the side chain can adopt a reasonable conformation and achieve inner-sphere zinc coordination. Moreover, this structure-assisted design approach may be effective in the development of high-sensitivity metal ion biosensors.
Resumo:
"March 1980."