994 resultados para hydroxyl,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaolinite surfaces were modified by mechanochemical treatment for periods of time up to 10 h. X-ray diffraction shows a steady decrease in intensity of the d(001) spacing with mechanochemical treatment, resulting in the delamination of the kaolinite and a subsequent decrease in crystallite size with grinding time. Thermogravimetric analyses show the dehydroxylation patterns of kaolinite are significantly modified. Changes in the molecular structure of the kaolinite surface hydroxyls were followed by infrared spectroscopy. Hydroxyls were lost after 10 h of grinding as evidenced by a decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm−1 and the deformation modes at 937 and 915 cm−1. Concomitantly an increase in the hydroxyl stretching vibrations of water is found. The water-bending mode was observed at 1650 cm−1, indicating that water is coordinating to the modified kaolinite surface. Changes in the surface structure of the OSiO units were reflected in the SiO stretching and OSiO bending vibrations. The decrease in intensity of the 1056 and 1034 cm−1 bands attributed to kaolinite SiO stretching vibrations were concomitantly matched by the increase in intensity of additional bands at 1113 and 520 cm−1 ascribed to the new mechanically synthesized kaolinite surface. Mechanochemical treatment of the kaolinite results in a new surface structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of selected autunites with phosphate as the anion have been studied using infrared spectroscopy. Each autunite mineral has its own characteristic spectrum. The spectra for different autunites with the same composition are different. It is proposed that this difference is due to the structure of water and hydrated cations in the interlayer region between the uranyl phosphate sheets. This structure is different for different autunites. The position of the water hydroxyl stretching bands is related to the strength of the hydrogen bonds as determined by hydrogen bond distance. The highly ordered structure of water is also observed in the water HOH bending modes where a high wavenumber bands are observed. The phosphate and uranyl stretching vibrations overlap and are obtained by curve resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy has been used to study a selection of vivianites from different origins. A band is identified at around 3480 cm-1 whose intensity is sample dependent. The band is attributed to the stretching vibration of Fe3+ OH units which are formed through the autooxidation of the vivianite minerals either by self-oxidation or by photocatalytic oxidation according to the reaction: (Fe2+)3(PO4)2·8H2O + 1/2O2 (Fe2+)3– x(Fe3+)x(PO4)2(OH)x·(8–x)H2O in which some of the water of crystallization is converted to hydroxyl anions. Complexity of the OH stretching region through the overlap of broad bands is reflected in the water HOH deformation modes at 1660 cm–1. Using the infrared bands at 3281, 3105 and 3025 cm–1, hydrogen bond distances of 2.734(5), 2.675(2) and 2.655(2) Å are calculated. Vivianites are characterised by an intense band at 950 cm–1 assigned to the PO4 symmetric stretching vibration. Low Raman intensity bands are observed at ~1077, ~1050, 1015 and ~ 985 cm–1 assigned to the phosphate PO4 antisymmetric stretching vibrations. Multiple antisymmetric stretching vibrations are due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Two bands are observed at ~ 423 and ~ 456 cm–1 assigned to the2bending modes. For the vivianites four bands are observed at ~ 584, ~ 571, ~ 545 and ~ 525 cm–1 assigned to the 4modes of vivianite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman spectra of both low- and high-defect kaolinites in the hydroxyl stretching and low-wavenumber region were obtained with excitation at three visible wavelengths of 633, 514 and 442 nm and a UV wavelength of 325 nm. The UV-excited spectra were comparable to those excited by the visible wavelengths. The Raman spectra show hydroxyl stretching bands at 3621 cm-1 attributed to the inner hydroxyl, at 3692 and 3684 cm-1 attributed to the longitudinal and transverse optic modes of the inner surface hydroxyls and at 3668 and 3653 cm-1 assigned to the out-of phase vibrations of the inner surface hydroxyls. Two bands were observed in the spectral profile at 3695 cm-1 for the high-defect kaolinite at 3698 and 3691 cm-1 and were assigned to TO/LO splitting. An increase in relative intensity of the transverse optic mode is observed with decrease in laser wavelength. The intensity of the out-of-phase vibrations at 3668 and 3653 cm-1 of the inner surface hydroxyls shows a linear relationship with the longitudinal and transverse optic modes. In the low-wavenumber region excellent correlation was found between the experimentally determined and the calculated band positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrotalcites of formula Mg6 (Fe,Al)2(OH)16(CO3).4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio have been successfully synthesised. The XRD patterns show variation in the d-spacing attributed to the size of the cation. Raman and infrared bands in the OH stretching region are assigned to (a) brucite layer OH stretching vibrations (b) water stretching bands and (c) water strongly hydrogen bonded to the carbonate anion. Multiple (CO3)2- symmetric stretching bands suggest that different types of (CO3)2- exist in the hydrotalcite interlayer. Increasing the cation ratio (Mg/Al,Fe) resulted in an increase in the combined intensity of the 2 Raman bands at around 3600 cm-1, attributed to Mg-OH stretching modes, and a shift of the overall band profile to higher wavenumbers. These observations are believed to be a result of the increase in magnesium in the structure. Raman spectroscopy shows a reduction in the symmetry of the carbonate, leading to the conclusion that the anions are bonded to the brucite-like hydroxyl surface and to the water in the interlayer. Water bending modes are identified in the infrared spectra at positions greater than 1630 cm-1, indicating the water is strongly hydrogen bonded to both the interlayer anions and the brucite-like surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular structure of the uranyl mineral rutherfordine has been investigated by the measurement of the NIR and Raman spectra and complemented with infrared spectra including their interpretation. The spectra of the rutherfordine show the presence of both water and hydroxyl units in the structure as evidenced by IR bands at 3562 and 3465 cm-1 (OH) and 3343, 3185 and 2980 cm-1 (H2O). Raman spectra show the presence of four sharp bands at 3511, 3460, 3329 and 3151 cm-1. Corresponding molecular water bending vibrations were only observed in both Raman and infrared spectra of one of two studied rutherfordine samples. The second rutherfordine sample studied contained only hydroxyl ions in the equatorial uranyl plane and did not contain any molecular water. The infrared spectra of the (CO3)2- units in the antisymmetric stretching region show complexity with three sets of carbonate bands observed. This combined with the observation of multiple bands in the (CO3)2- bending region in both the Raman and IR spectra suggests that both monodentate and bidentate (CO3)2- units may be present in the structure. This cannot be exactly proved and inferred from the spectra; however, it is in accordance with the X-ray crystallographic studies. Complexity is also observed in the IR spectra of (UO2)2+ antisymmetric stretching region and is attributed to non-identical UO bonds. U-O bond lengths were calculated using wavenumbers of the 3 and 1 (UO2)2+ and compared with data from X-ray single crystal structure analysis of rutherfordine. Existence of solid solution having a general formula (UO2)(CO3)1-x(OH)2x.yH2O ( x, y  0) is supported in the crystal structure of rutherfordine samples studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, C8H12NO+ C7H3N2O6-, the anilinium and hydroxyl protons of the cation result in N-H...O, N-H..(O,O) and O-H...O hydrogen-bonding interactions with carboxylate O atom acceptors, forming a two-dimensional network structure. An intermolecular C-H...O interaction is also present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate, hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm-1 are assigned to the 1 (AsO4)3- symmetric stretching and 3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp band at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title compound C8H12NO+ C7H5O6S- . H2O, from the reaction of 2-(4-aminophenyl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through C1/1(9) anilinium N+-H...O(hydroxyl} interactions while the anions also form similar but C1/1(8)-linked chains through carboxylic acid O-..O(sulfonate) interactions. The chains inter-associate through a number of N-H...O and O-H...O bridging interactions giving a two-dimensional array in the ab plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of brandholzite Mg[Sb(OH)6].6H2O were studied, complemented with infrared spectra, and related to the structure of the mineral. An intense Raman sharp band at 618 cm-1 is attributed to the SbO symmetric stretching mode. The low intensity band at 730 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 503, 526 and 578 cm-1. Corresponding infrared bands were observed at 527, 600, 637, 693, 741 and 788 cm-1. Four Raman bands observed at 1043, 1092, 1160 and 1189 cm-1 and eight infrared bands at 963, 1027, 1055, 1075, 1108, 1128, 1156 and 1196 cm-1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3240, 3383, 3466, 3483 and 3552 cm-1, infrared bands at 3248, 3434 and 3565 cm-1. The first two Raman bands and the first infrared band are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm-1 and two infrared bands at 3434 and 3565 cm-1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O-H…O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2- units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8\[O8](OH)5\[(SO4)4].25H2O; however Raman spectroscopy does not detect any hydroxyl units. Raman bands at 805 and 810 cm-1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm-1 are assigned to the (SO4)2- symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm-1 are assigned to the (SO4)2- ν2 bending modes. The bands at 210 and 279 cm-1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a “rodlike” aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 °C as observed in IES spectra.