989 resultados para hydroxybenzoic acid isomers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eight phenolic acids and two abscisic acid isomers in Australian honeys from five botanical species (Melaleuca, Guioa, Lophostemon, Banksia and Helianthus) have been analyzed in relation to their botanical origins. Total phenolic acids present in these honeys range from 2.13 mg/100 g sunflower (Helianthus annuus) honey to 12.11 mg/100 g tea tree (Melaleuca quinquenervia) honey, with amounts of individual acids being various. Tea tree honey shows a phenolic profile of gallic, ellagic, chlorogenic and coumaric acids, which is similar to the phenolic profile of an Australian Eucalyptus honey (bloodwood or Eucalyptus intermedia honey). The main difference between tea tree and bloodwood honeys is the contribution of chlorogenic acid to their total phenolic profiles. In Australian crow ash (Guioa semiglauca) honey, a characteristic phenolic profile mainly consisting of gallic acid and abscisic acid could be used as the floral marker. In brush box (Lophostemon conferta) honey, the phenolic profile, comprising mainly gallic acid and ellagic acid, could be used to differentiate this honey not only from the other Australian non-Eucalyptus honeys but also from a Eucalyptus honey (yellow box or Eucalyptus melliodora honey). However, this Eucalyptus honey could not be differentiated from brush box honey based only on their flavonoid profiles. Similarly, the phenolic profile of heath (Banksia ericifolia) honey, comprising mainly gallic acid, an unknown phenolic acid (Phl) and coumaric acid, could also be used to differentiate this honey from tea tree and bloodwood honeys, which have similar flavonoid profiles. Coumaric acid is a principal phenolic acid in Australian sunflower honey and it could thus be used together with gallic acid for the authentication. These results show that the HPLC analysis of phenolic acids and abscisic acids in Australian floral honeys Could assist the differentiation and authentication of the honeys. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poorly water-soluble drugs show an increase in solubility in the presence of cyclodextrins (CyD) due to the formation of a water-soluble complex between the drug and dissolved CyD. This study investigated the interactions of -Cyd and hydroxypropyl--CyD (HP--CyD, M.S. = 0.6) with antimicrobial agents of limited solubility in an attempt to increase their microbiological efficacy. The agents studied were chlorhexidine dihydrochloride (CHX), p-hydroxybenzoic acid esters (methyl, ethyl, proply and butyl) and triclosan. The interactions between the antimicrobials and CyDs were studied in solution and solid phases. Phase solubility studied revealed an enhancement in the aqueous drug solubility in the presence of the CyD and also gave an indication of the complex stability constant (Ks). The temperature-dependence of the stability constant of the complex was modelled by the van't Hoff plot which yielded the thermodynamic parameters for complexation. Further confirmation of the inclusion of the antimicrobials within the cavity of the CyDs in aqueous solution was obtained from proton magnetic resonance and ultraviolet absorption spectroscopies. The former method indicated that the chlorophenyl moiety of the CHX was included within the -CyD cavity and the stoichiometry of the complex formed was 1:1. The solid-phase complexes were prepared by freeze-drying. The inclusion complex of triclosan with HP--CyD was obtained from aqueous solution with the addition of ammonia. Evidence to confirm complex formation was obtained from DSC, IR and X-ray powder diffraction studies. Dissolution studies of the solid inclusion complexes using the dispersed powder technique illustrated their superior solubilities as compared to the equimolar physical mix of the guest and CyD. It was shown that these solutions of the complex were supersaturated with respect to the free guest. This was further demonstrated by diffusion studies which showed the flux of free drug from donor solutions of the antimicrobial-CyD complex to be significantly greater than the flux from donor suspensions of drug alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rising atmospheric CO2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO2 world.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mushrooms are known as a powerful source of bioactive compounds including antioxidants, inhibitors of human tumour cell lines growth, inducers of apoptosis and enhancers of immunity. Indeed, many pre-clinical studies have been conducted in human tumour cell lines and in some cases a number of compounds isolated from mushrooms have followed to clinical trials. The Northeast of Portugal is one of the European regions with higher wild mushrooms diversity. However, to our knowledge, no studies had been conducted so far to verify their bioactivities. The main aim of this work was the evaluation of the bioactive properties (antioxidant properties and growth inhibitory potential on human tumour cell lines) of wild edible mushrooms collected in the Northeast of Portugal. Once properly identified, methanolic, ethanolic and boiling water extracts were prepared from thirty eight wild mushroom species collected in that region. Chemical characterization was obtained by high performance liquid chromatography (HPLC) coupled to a photodiode array detector (DAD) or to a refraction index detector (RI). Antioxidant activity assays were carried out in those extracts, including evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging capacity, reducing power and inhibition of β-carotene bleaching. Extract-induced cell growth inhibition was assessed with the sulforhodamine B assay in four human tumour cell lines (NCI-H460 - lung cancer, MCF-7 -breast cancer, HCT-15 -colon cancer and AGS - gastric cancer). The effects on cell cycle profile and apoptosis were evaluated by flow cytometry and the effect on the expression levels of proteins related to cell cycle and apoptosis was further investigated by Western blotting. Three wild edible mushroom species revealed growth inhibitory activity in the studied human tumour cell lines: Clitocybe alexandri ethanolic extract, Lepista inversa methanolic extract and Suillus collinitus methanolic extract. C. alexandri ethanolic extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells, in the NCI-H460 cell line. The analysed mushroom species also provided interesting antioxidant potential, mainly the boiling water extract of L. inversa which showed the highest DPPH radical scavenging activity, reducing power and β-carotene bleaching inhibition. S. collinitus methanolic extract induced a slight increase in the number of cells in G1, with a concomitant decrease in the percentage of cells in the S phase of the cell cycle and an increase in the percentage of apoptotic cells, in the MCF-7 cell line. The combined use of the S. collinitus methanolic extract and etoposide caused a greater decrease in the percentage of cell growth, when compared to either of them used individually, indicating the potential benefit of this combination. The tested extracts were chemically characterized and protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids were the main compounds identified on the phenolic (methanolic and ethanolic) extracts, while mannitol, trehalose and arabinose were the main sugars found in the polysaccharidic (boiling water) extracts after hydrolysis. The individual compounds identified in the extracts were submitted to a screening of tumour cells growth inhibitory activity, but only the phenolic acids and a related compound, cinnamic acid, presented activity. This compound was found to be the most potent one regarding cell growth inhibition in the NCI-H460 cell line. The effect of the individual and combined treatment with the identified compounds was also evaluated. Cinnamic and protochatequic acids caused a statistically significantly reduction in the number of viable cells. In addition, p-hydroxybenzoic acid did not show any significantly reduction in the viable cell number. Nevertheless, it was verified that the concomitant use of the three compounds provided the strongest decrease in the viable cell number, suggesting a possible concomitant effect of those compounds. Overall, the present work has contributed to further understand the bioactive potential of wild edible mushrooms from the Northeast of Portugal. This study allowed to identify some species with antioxidant or tumour cell growth inhibitory potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents the chemical profile of two edible species of mushrooms from the genus Leccinum: Leccinum molle (Bon) Bon and Leccinum vulpinum Watling, both harvested on the outskirts of Bragança (Northeastern Portugal). Both species were prepared and characterized regarding their content in nutrients (i.e., free sugars, fatty acids and vitamins), non-nutrients (i.e., phenolic and other organic acids) and antioxidant activity. To the best of our knowledge, no previous studies on the chemical characterization and bioactivity of these species have been undertaken. Accordingly, this study intends to increase the available information concerning edible mushroom species, as well as to highlight another important factor regarding the conservation of the mycological resources--their potential as sources of nutraceutical/pharmaceutical compounds. Overall, both species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and high percentages of mono- and polyunsaturated fatty acids. They also revealed the presence of bioactive compounds, namely phenolic (e.g., gallic acid, protocatechuic acid and p-hydroxybenzoic acid) and organic acids (e.g., citric and fumaric acids) and presented antioxidant properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parabens are a family of p-hydroxybenzoic acid esters, which have antimicrobial activity over a broad pH range (4-8). This study was designed to evaluate the enhanced thermal inactivation of Cronobacter sakazakii by the inclusion of “parabens” and to ultimately develop mathematical models to describe this effect. A heat-resistant strain, Cronobacter sakazakii 607, was heated at three mild heating temperatures in combination with treatments with five parabens in various concentrations. Results showed the presence of parabens significantly enhanced thermal inactivation in a concentration-dependent manner, and the effect increased with increasing alkyl chain length. The concentration of parabens, alkyl side chain length, and heating temperature acted synergistically, causing bacterial inactivation even at low temperatures that were not effective in killing C. sakazakii. The survival data were used to develop primary and secondary mathematical models that accurately describe how this synergistic activity can be applied in the food industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias, especialidade de Produção Animal

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estimation of the dissociation constant, or pK(a), of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pK(a) values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pK(a), the acid dissociation constant. We show that the method predicts the pK(a) value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pK(a) values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]A comprehensive evaluation of the fatty acid composition of subcutaneous adipose tissue from beef cattle produced in western Canada was undertaken to determine if the current Canadian grading system is able to distinguish classes of animals with value added potential due to their fatty acid composition. Grades included youthful Canadian Yield Grade 1 A/AA beef, under (YUTM) and over (YOTM) 30 mo of age and the four mature grades (D1, D2, D2 and D4). Subcutaneous fat between the 12th and 13th ribs over the longissimus muscle was obtained from 18_21 animals per grade. Fatty acids were analyzed using a combination of silver-ion HPLC and GC with a highly polar 100 m column. There were no differences in total trans-18:1 content amongst grades, but adipose tissue from grade D1, D2 and D4 had more 11t-18:1 than YUTM (PB0.05), whereas adipose tissue from YUTM carcasses had more 10t-18:1 than all other grades (PB0.05). Adipose tissue from YUTM carcasses also had less total CLA (PB0.05) than the D grades, mainly due to a lower level of 9c,11t-CLA, but they had slightly more 7t,9c-CLA and 10t,12c-CLA (PB0.05). Adipose tissue from YOTM and D grades contained more n-3 fatty acids relative to YUTM (0.56% vs. 0.29%; PB0.05) and lower n-6:n-3 ratios (PB0.05). Overall, older animals (YOTM and D grades) had adipose tissue compositions with higher levels of fatty acids with reported health benefits. Taken together, these higher levels may provide opportunities for value added marketing if regulatory authorities allow claims for their enrichment based on demonstrated health benefits. Higher concentrations of beneficial fatty acids, however, need to be considered within the context of the complete fatty acid profile and it would be important to demonstrate their advantages in the presence of relatively high levels of saturated fatty acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.