963 resultados para hydrological model
Resumo:
Esta Tesis realiza una contribución metodológica al estudio del impacto del cambio climático sobre los usos del agua, centrándose particularmente en la agricultura. Tomando en consideración su naturaleza distinta, la metodología aborda de forma integral los impactos sobre la agricultura de secano y la agricultura de regadío. Para ello incorpora diferentes modelos agrícolas y de agua que conjuntamente con las simulaciones de los escenarios climáticos permiten determinar indicadores de impacto basados en la productividad de los cultivos, para el caso de la agricultura de secano, e indicadores de impacto basados en la disponibilidad de agua para irrigación, para el caso de la agricultura de regadío. La metodología toma en consideración el efecto de la variabilidad climática en la agricultura, evaluando las necesidades de adaptación y gestión asociadas a los impactos medios y a la variabilidad en la productividad de los cultivos y el efecto de la variabilidad hidrológica en la disponibilidad de agua para regadío. Considerando la gran cantidad de información proporcionada por las salidas de las simulaciones de los escenarios climáticos y su complejidad para procesarla, se ha desarrollado una herramienta de cálculo automatizada que integra diferentes escenarios climáticos, métodos y modelos que permiten abordar el impacto del cambio climático sobre la agricultura, a escala de grandes extensiones. El procedimiento metodológico parte del análisis de los escenarios climáticos en situación actual (1961-1990) y futura (2071-2100) para determinar su fiabilidad y conocer qué dicen exactamente las proyecciones climáticas a cerca de los impactos esperados en las principales variables que intervienen en el ciclo hidrológico. El análisis hidrológico se desarrolla en los ámbitos territoriales de la planificación hidrológica en España, considerando la disponibilidad de información para validar los resultados en escenario de control. Se utilizan como datos observados las series de escorrentía en régimen natural estimadas el modelo hidrológico SIMPA que está calibrado en la totalidad del territorio español. Al trabajar a escala de grandes extensiones, la limitada disponibilidad de datos o la falta de modelos hidrológicos correctamente calibrados para obtener los valores de escorrentía, muchas veces dificulta el proceso de evaluación, por tanto, en este estudio se plantea una metodología que compara diferentes métodos de interpolación y alternativas para generar series anuales de escorrentía que minimicen el sesgo con respecto a los valores observados. Así, en base a la alternativa que genera los mejores resultados, se obtienen series mensuales corregidas a partir de las simulaciones de los modelos climáticos regionales (MCR). Se comparan cuatro métodos de interpolación para obtener los valores de las variables a escala de cuenca hidrográfica, haciendo énfasis en la capacidad de cada método para reproducir los valores observados. Las alternativas utilizadas consideran la utilización de la escorrentía directa simulada por los MCR y la escorrentía media anual calculada utilizando cinco fórmulas climatológicas basadas en el índice de aridez. Los resultados se comparan además con la escorrentía global de referencia proporcionada por la UNH/GRDC que en la actualidad es el “mejor estimador” de la escorrentía actual a gran escala. El impacto del cambio climático en la agricultura de secano se evalúa considerando el efecto combinado de los riesgos asociados a las anomalías dadas por los cambios en la media y la variabilidad de la productividad de los cultivos en las regiones agroclimáticas de Europa. Este procedimiento facilita la determinación de las necesidades de adaptación y la identificación de los impactos regionales que deben ser abordados con mayor urgencia en función de los riesgos y oportunidades identificadas. Para ello se utilizan funciones regionales de productividad que han sido desarrolladas y calibradas en estudios previos en el ámbito europeo. Para el caso de la agricultura de regadío, se utiliza la disponibilidad de agua para irrigación como un indicador del impacto bajo escenarios de cambio climático. Considerando que la mayoría de estudios se han centrado en evaluar la disponibilidad de agua en régimen natural, en este trabajo se incorpora el efecto de las infraestructuras hidráulicas al momento de calcular el recurso disponible bajo escenarios de cambio climático Este análisis se desarrolla en el ámbito español considerando la disponibilidad de información, tanto de las aportaciones como de los modelos de explotación de los sistemas hidráulicos. Para ello se utiliza el modelo de gestión de recursos hídricos WAAPA (Water Availability and Adaptation Policy Assessment) que permite calcular la máxima demanda que puede atenderse bajo determinados criterios de garantía. Se utiliza las series mensuales de escorrentía observadas y las series mensuales de escorrentía corregidas por la metodología previamente planteada con el objeto de evaluar la disponibilidad de agua en escenario de control. Se construyen proyecciones climáticas utilizando los cambios en los valores medios y la variabilidad de las aportaciones simuladas por los MCR y también utilizando una fórmula climatológica basada en el índice de aridez. Se evalúan las necesidades de gestión en términos de la satisfacción de las demandas de agua para irrigación a través de la comparación entre la disponibilidad de agua en situación actual y la disponibilidad de agua bajo escenarios de cambio climático. Finalmente, mediante el desarrollo de una herramienta de cálculo que facilita el manejo y automatización de una gran cantidad de información compleja obtenida de las simulaciones de los MCR se obtiene un proceso metodológico que evalúa de forma integral el impacto del cambio climático sobre la agricultura a escala de grandes extensiones, y a la vez permite determinar las necesidades de adaptación y gestión en función de las prioridades identificadas. ABSTRACT This thesis presents a methodological contribution for studying the impact of climate change on water use, focusing particularly on agriculture. Taking into account the different nature of the agriculture, this methodology addresses the impacts on rainfed and irrigated agriculture, integrating agricultural and water planning models with climate change simulations scenarios in order to determine impact indicators based on crop productivity and water availability for irrigation, respectively. The methodology incorporates the effect of climate variability on agriculture, assessing adaptation and management needs associated with mean impacts, variability in crop productivity and the effect of hydrologic variability on water availability for irrigation. Considering the vast amount of information provided by the outputs of the regional climate model (RCM) simulations and also its complexity for processing it, a tool has been developed to integrate different climate scenarios, methods and models to address the impact of climate change on agriculture at large scale. Firstly, a hydrological analysis of the climate change scenarios is performed under current (1961-1990) and future (2071-2100) situation in order to know exactly what the models projections say about the expected impact on the main variables involved in the hydrological cycle. Due to the availability of information for validating the results in current situation, the hydrological analysis is developed in the territorial areas of water planning in Spain, where the values of naturalized runoff have been estimated by the hydrological model SIMPA, which are used as observed data. By working in large-scale studies, the limited availability of data or lack of properly calibrated hydrological model makes difficult to obtain runoff time series. So as, a methodology is proposed to compare different interpolation methods and alternatives to generate annual times series that minimize the bias with respect to observed values. Thus, the best alternative is selected in order to obtain bias-corrected monthly time series from the RCM simulations. Four interpolation methods for downscaling runoff to the basin scale from different RCM are compared with emphasis on the ability of each method to reproduce the observed behavior of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index. The results are also compared with the global runoff reference provided by the UNH/GRDC dataset, as a contrast of the “best estimator” of current runoff on a large scale. Secondly, the impact of climate change on rainfed agriculture is assessed considering the combined effect of the risks associated with anomalies given by changes in the mean and variability of crop productivity in the agro-climatic regions of Europe. This procedure allows determining adaptation needs based on the regional impacts that must be addressed with greater urgency in light of the risks and opportunities identified. Statistical models of productivity response are used for this purpose which have been developed and calibrated in previous European study. Thirdly, the impact of climate change on irrigated agriculture is evaluated considering the water availability for irrigation as an indicator of the impact. Given that most studies have focused on assessing water availability in natural regime, the effect of regulation is incorporated in this approach. The analysis is developed in the Spanish territory considering the available information of the observed stream flows and the regulation system. The Water Availability and Adaptation Policy Assessment (WAAPA) model is used in this study, which allows obtaining the maximum demand that could be supplied under certain conditions (demand seasonal distribution, water supply system management, and reliability criteria) for different policy alternatives. The monthly bias corrected time series obtained by previous methodology are used in order to assess water availability in current situation. Climate change projections are constructed taking into account the variation in mean and coefficient of variation simulated by the RCM. The management needs are determined by the agricultural demands satisfaction through the comparison between water availability under current conditions and under climate change projections. Therefore, the methodology allows evaluating the impact of climate change on agriculture to large scale, using a tool that facilitates the process of a large amount of complex information provided by the RCM simulations, in order to determine the adaptation and management needs in accordance with the priorities of the indentified impacts.
Resumo:
Water balance simulation in cropping systems is a very useful tool to study how water can be used efficiently. However this requires that models simulate an accurate water balance. Comparing model results with field observations will provide information on the performance of the models. The objective of this study was to test the performance of DSSAT model in simulating the water balance by comparing the simulations with observed measurements. The soil water balance in DSSAT uses a one dimensional ?tipping bucket? soil water balance approach where available soil water is determined by the drained upper limit (DUL), lower limit (LL) and saturated water content (SAT). A continuous weighing lysimeter was used to get the observed values of drainage and evapotranspiration (ET). An automated agrometeorological weather station close to the lisymeter was also used to record the climatic data. The model simulated accurately the soil water content after the optimization of the soil parameters. However it was found the inability of the model to capture small changes in daily drainage and ET. For that reason simulated cumulative values had larger errors as the time passed by. These results suggested the need to compare outputs of DSSAT and some hydrological model that simulates soil water movement with a more mechanistic approach. The comparison of the two models will allow us to find which mechanism can be modified or incorporated in DSSAT model to improve the simulations.
Resumo:
En la actualidad, la gestión de embalses para el control de avenidas se realiza, comúnmente, utilizando modelos de simulación. Esto se debe, principalmente, a su facilidad de uso en tiempo real por parte del operador de la presa. Se han desarrollado modelos de optimización de la gestión del embalse que, aunque mejoran los resultados de los modelos de simulación, su aplicación en tiempo real se hace muy difícil o simplemente inviable, pues está limitada al conocimiento de la avenida futura que entra al embalse antes de tomar la decisión de vertido. Por esta razón, se ha planteado el objetivo de desarrollar un modelo de gestión de embalses en avenidas que incorpore las ventajas de un modelo de optimización y que sea de fácil uso en tiempo real por parte del gestor de la presa. Para ello, se construyó un modelo de red Bayesiana que representa los procesos de la cuenca vertiente y del embalse y, que aprende de casos generados sintéticamente mediante un modelo hidrológico agregado y un modelo de optimización de la gestión del embalse. En una primera etapa, se generó un gran número de episodios sintéticos de avenida utilizando el método de Monte Carlo, para obtener las lluvias, y un modelo agregado compuesto de transformación lluvia- escorrentía, para obtener los hidrogramas de avenida. Posteriormente, se utilizaron las series obtenidas como señales de entrada al modelo de gestión de embalses PLEM, que optimiza una función objetivo de costes mediante programación lineal entera mixta, generando igual número de eventos óptimos de caudal vertido y de evolución de niveles en el embalse. Los episodios simulados fueron usados para entrenar y evaluar dos modelos de red Bayesiana, uno que pronostica el caudal de entrada al embalse, y otro que predice el caudal vertido, ambos en un horizonte de tiempo que va desde una a cinco horas, en intervalos de una hora. En el caso de la red Bayesiana hidrológica, el caudal de entrada que se elige es el promedio de la distribución de probabilidad de pronóstico. En el caso de la red Bayesiana hidráulica, debido al comportamiento marcadamente no lineal de este proceso y a que la red Bayesiana devuelve un rango de posibles valores de caudal vertido, se ha desarrollado una metodología para seleccionar un único valor, que facilite el trabajo del operador de la presa. Esta metodología consiste en probar diversas estrategias propuestas, que incluyen zonificaciones y alternativas de selección de un único valor de caudal vertido en cada zonificación, a un conjunto suficiente de episodios sintéticos. Los resultados de cada estrategia se compararon con el método MEV, seleccionándose las estrategias que mejoran los resultados del MEV, en cuanto al caudal máximo vertido y el nivel máximo alcanzado por el embalse, cualquiera de las cuales puede usarse por el operador de la presa en tiempo real para el embalse de estudio (Talave). La metodología propuesta podría aplicarse a cualquier embalse aislado y, de esta manera, obtener, para ese embalse particular, diversas estrategias que mejoran los resultados del MEV. Finalmente, a modo de ejemplo, se ha aplicado la metodología a una avenida sintética, obteniendo el caudal vertido y el nivel del embalse en cada intervalo de tiempo, y se ha aplicado el modelo MIGEL para obtener en cada instante la configuración de apertura de los órganos de desagüe que evacuarán el caudal. Currently, the dam operator for the management of dams uses simulation models during flood events, mainly due to its ease of use in real time. Some models have been developed to optimize the management of the reservoir to improve the results of simulation models. However, real-time application becomes very difficult or simply unworkable, because the decision to discharge depends on the unknown future avenue entering the reservoir. For this reason, the main goal is to develop a model of reservoir management at avenues that incorporates the advantages of an optimization model. At the same time, it should be easy to use in real-time by the dam manager. For this purpose, a Bayesian network model has been developed to represent the processes of the watershed and reservoir. This model learns from cases generated synthetically by a hydrological model and an optimization model for managing the reservoir. In a first stage, a large number of synthetic flood events was generated using the Monte Carlo method, for rain, and rain-added processing model composed of runoff for the flood hydrographs. Subsequently, the series obtained were used as input signals to the reservoir management model PLEM that optimizes a target cost function using mixed integer linear programming. As a result, many optimal discharge rate events and water levels in the reservoir levels were generated. The simulated events were used to train and test two models of Bayesian network. The first one predicts the flow into the reservoir, and the second predicts the discharge flow. They work in a time horizon ranging from one to five hours, in intervals of an hour. In the case of hydrological Bayesian network, the chosen inflow is the average of the probability distribution forecast. In the case of hydraulic Bayesian network the highly non-linear behavior of this process results on a range of possible values of discharge flow. A methodology to select a single value has been developed to facilitate the dam operator work. This methodology tests various strategies proposed. They include zoning and alternative selection of a single value in each discharge rate zoning from a sufficient set of synthetic episodes. The results of each strategy are compared with the MEV method. The strategies that improve the outcomes of MEV are selected and can be used by the dam operator in real time applied to the reservoir study case (Talave). The methodology could be applied to any single reservoir and, thus, obtain, for the particular reservoir, various strategies that improve results from MEV. Finally, the methodology has been applied to a synthetic flood, obtaining the discharge flow and the reservoir level in each time interval. The open configuration floodgates to evacuate the flow at each interval have been obtained applying the MIGEL model.
Resumo:
In the early 1990's, outline designs for two wetland nature reserves were being prepared: the Teeside International Nature Reserve (TINR) and the Cardiff Bay Barrage Environmental Compensation Measures at Redwick, Gwent. The initial design for both proposals identified reedbed as a desirable habitat for establishment. The initial design works identified the importance of reedbed evapotranspiration [ET(Reed)] within the water budget, however, literature searches identified a paucity of information on this parameter. Field experiments for the measurement of ET(Reed) from Phragmites australis are described for three sites distributed across England and Wales. Reference Crop Evapotranspiration (ETo) was calculated using techniques recommended by the Food and Agriculture Organisation. A technique for the calculation of a reedbed crop coefficient [Kc(Reed)[, from ET(Reed) and ETo data is discussed. Kc(Reed) values produced in the project were found to be similar to those developed previously in continental Europe. Mean monthly and crop development stage Kc(Reed) values are presented which are applicable in the UK and possibly worldwide. A conceptual hydrological model of surface water fed reedbed systems is developed, and used to calculate the hydrological sustainability of reedbed creation areas in the UK. Finally, the water budget model is verified using data from a small clay catchment located on the TINR. In addition, a methodology is developed for the hydrological design of surface water fed reedbed systems, and recommendations required for the feasibility, design and establishment stage of reedbed creation sites. Further research needs are also identified.
Resumo:
This paper focuses on the development of methods and cascade of models for flood monitoring and forecasting and its implementation in Grid environment. The processing of satellite data for flood extent mapping is done using neural networks. For flood forecasting we use cascade of models: regional numerical weather prediction (NWP) model, hydrological model and hydraulic model. Implementation of developed methods and models in the Grid infrastructure and related projects are discussed.
Resumo:
Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
La gestion intégrée de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociétés de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu à l’autre. Il est possible de simplifier cette question en s’attardant plutôt aux deux destinations de l’eau. L’eau bleue forme les réserves et les flux dans l’hydrosystème : cours d’eau, nappes et écoulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphère. Elle inclut l’eau consommée par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intéressant généralement qu’au devenir des débits ou, plus rarement, à la recharge des nappes. Le portrait global est alors manquant. Dans un même temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de manière distincte les différents composants de cycle hydrologique. L’étude réalisée ici utilise l’outil de modélisation SWAT afin de réaliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystème du bassin versant de la Garonne. Une première partie du travail a permis d’affiner la mise en place du modèle pour répondre au mieux à la problématique posée. Un soin particulier a été apporté à l’utilisation de données météorologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramètres du modèle a été testé dans un contexte differential split sampling, en calant puis validant sur des années contrastées en terme climatique afin d’appréhender la robustesse de la simulation dans un contexte de changements climatiques. Cette étape a permis une amélioration substantielle des performances sur la période de calage (2000-2010) ainsi que la mise en évidence de la stabilité du modèle face aux changements climatiques. Par suite, des simulations sur une période d’un siècle (1960-2050) ont été produites puis analysées en deux phases : i) La période passée (1960-2000), basée sur les observations climatiques, a servi de période de validation à long terme du modèle sur la simulation des débits, avec de très bonnes performances. L’analyse des différents composants hydrologiques met en évidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbées au niveau du stock de neige et des débits qui présentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont été réalisées (2010-2050) en sélectionnant une gamme de scénarios et de modèles climatiques issus d’une mise à l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirées de la période passée : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la période estivale est telle qu’elle en vient à réduire les flux d’évapotranspiration réelle, mettant en évidence le possible déficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les débits semblent cette fois en hausse pendant l’automne et l’hiver. Ces résultats sont un signe de l’«accélération» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des évènements extrêmes de précipitation. Ce travail a permis de réaliser une analyse des variations de la plupart des composantes du cycle hydrologique à l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour évaluer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau.
Resumo:
Face à Directiva 2007/60/CE relativa à avaliação e gestão do risco de inundações, ao Decreto-Lei nº 344/2007 que aprova o Regulamento de Segurança de Barragens, ao aumento de áreas urbanizadas e às projecções dos modelos de clima para o fim do século, que apontam para o aumento da frequência e da intensidade da ocorrência de inundações causadas por eventos de precipitação intensa de curta duração, é crucial a definição de regras de operação nos reservatórios com controlo de cheias. O Reservatório de Magos pertence à bacia hidrográfica do rio Tejo, está situado no Concelho de Salvaterra de Magos e tem como usos principais a rega e o controlo de cheias. Este trabalho tem como objecto de estudo a definição das regras de operação (restrição no caudal descarregado) do Reservatório de Magos para controlo de cheias no troço a jusante. São aplicados o modelo hidrológico HEC-HMS 3.1.0, o modelo hidráulico HEC-RAS 3.1.3 e o modelo de simulação de reservatórios HEC-ResSim 3.O para o cálculo do hidrograma de cheia, da zona inundável e para simulação do balanço de água no reservatório, respectivamente. Como resultado são apresentadas as regras de operação (caudal máximo e mínimo a descarregar) do Reservatório de Magos para controlo da zona inundável a jusante, no caso de um evento de cheia. /ABSTRACT: Based on the Directive 2007/60/CE related to the Assessment and Management of Flood Risks, on the Decree-Law n. o 344/2007 which approves the Regulation for Dam Safety, the increased urban areas and to the projections of climate models by the end of the century which is pointing to an increased frequency and intensity of occurrence of floods caused by intense rainfall events of short duration, establishing rules of operation for flood control in reservoirs becomes crucial. The Magos Reservoir belongs to the river Tagus basin, located in the county of Salvaterra de Magos and has as its main uses the irrigation and flood control. This study aims to establish the rules of operation (flow discharged restriction) of the Reservoir of Magos for flood control in the downstream reach. The methodology used in the present work includes the application of the Hydrological model HEC-HMS 3.1.0, the Hydraulic model HEC-RAS 3.1.3 and a reservoir simulation model HEC-ResSim 3.0 to calculate the hydrograph of peak discharge, floodplain zone and simulate reservoir operations, respectively. As a result, the rules of operation (maximum flow and minimum discharge) of Magos Reservoir for flood control in a downstream reach in case of flood event are presented.
Resumo:
Enquadra-se o aquífero de Ourém no Sinclinal de Ourém e na Bacia Lusitaniana. Propõe-se um modelo conceptual do aquífero de Ourém que tem em consideração a cota da base e do topo e a espessura da formação geológica que o constitui. Estabelece-se um paralelo entre os Membros da Formação da Figueira da Foz e as características hidrogeológicas do aquífero. Avalia-se o regime de exploração por métodos estatísticos robustos, de onde se concluiu que a captação de água desregulada tem levado a uma descida constante dos níveis piezométricos, atingindo em algumas áreas os 7 cm/mês, independentemente da precipitação anual nos últimos anos. Uma campanha de monitorização definiu o sentido NW-SE como o sentido preferencial de fluxo e a área NW do aquífero de Ourém como a área preferencial de recarga. Analisam-se qualitativamente as condições de fronteira do aquífero. ABSTRACT: A tridimensional conceptual model of the Ourém aquifer is defined, considering its top and bottom. The thickness of Figueira da Foz geological formation was calculated. A parallel between the Members of Figueira da Foz formation and hydrogeological characteristics of the aquifer is established. A robust statistical analysis concludes that the unregulated water abstraction of aquifer has led to a constant decrease of the piezometric levels. ln some areas the decreasing achieves 7 cm/month, independently of the annual rainfall. A piezometric monitoring campaign defines the NW-SE direction inside the preferential flow direction of the aquifer and the area NW of aquifer as the preferred aquifer recharge area. The aquifer boundary conditions are qualitatively evaluated.
Resumo:
Using a literature review, we argue that new models of peatland development are needed. Many existing models do not account for potentially important ecohydrological feedbacks, and/or ignore spatial structure and heterogeneity. Existing models, including those that simulate a near total loss of the northern peatland carbon store under a warming climate, may produce misleading results because they rely upon oversimplified representations of ecological and hydrological processes. In this, the first of a pair of papers, we present the conceptual framework for a model of peatland development, DigiBog, which considers peatlands as complex adaptive systems. DigiBog accounts for the interactions between the processes which govern litter production and peat decay, peat soil hydraulic properties, and peatland water-table behaviour, in a novel and genuinely ecohydrological manner. DigiBog consists of a number of interacting submodels, each representing a different aspect of peatland ecohydrology. Here we present in detail the mathematical and computational basis, as well as the implementation and testing, of the hydrological submodel. Remaining submodels are described and analysed in the accompanying paper. Tests of the hydrological submodel against analytical solutions for simple aquifers were highly successful: the greatest deviation between DigiBog and the analytical solutions was 2·83%. We also applied the hydrological submodel to irregularly shaped aquifers with heterogeneous hydraulic properties—situations for which no analytical solutions exist—and found the model's outputs to be plausible.
Resumo:
Medium range flood forecasting activities, driven by various meteorological forecasts ranging from high resolution deterministic forecasts to low spatial resolution ensemble prediction systems, share a major challenge in the appropriateness and design of performance measures. In this paper possible limitations of some traditional hydrological and meteorological prediction quality and verification measures are identified. Some simple modifications are applied in order to circumvent the problem of the autocorrelation dominating river discharge time-series and in order to create a benchmark model enabling the decision makers to evaluate the forecast quality and the model quality. Although the performance period is quite short the advantage of a simple cost-loss function as a measure of forecast quality can be demonstrated.
Resumo:
Literature cited: p. 29-30.