948 resultados para human osteoblast matrix
Resumo:
The aim of this investigation was to evaluate the osteoinductive property of autogenous demineralized dentin matrix (ADDM) on experimental surgical bone defects in the parietal bone of rabbits using the guided bone regeneration (GBR) technique incorporating human amniotic membrane (HAM). Thirty-six rabbits were divided into 2 groups, HAM and ADDM+HAM. It was possible to conclude that HAM did not interfere with bone repair and was resorbed. Slices of ADDM induced direct bone formation and were incorporated by the newly formed bone tissue and remodeled. The bone defects healed faster in the ADDM+HAM group than in the group with HAM only.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Characterization of the matrix metalloproteinase-2 (MMP-2) substrates and understanding of its function remain difficult because up to date preparations containing minor amounts of other eukaryotic proteins that are co-purified with MMP-2 are still used. In this work, the expression of a soluble and functional full-length recombinant human MMP-2 (rhMMP-2) in the cytoplasm of Escherichia coli is reported, and the purification of this metalloproteinase is described. Culture of this bacterium at 18 degrees C culminated in maintenance of the soluble and functional rhMMP-2 in the soluble fraction of the E. coli lysate and its purification by affinity with gelatin-sepharose yielded approximately 0.12 mg/L of medium. Western Blotting and zymographic analysis revealed that the most abundant form was the 72-kDa MMP-2, but some gelatinolytic bands corresponding to proteins with lower molecular weight were also detected. The obtained rhMMP-2 was demonstrated to be functional in a gelatinolytic fluorimetric assay, suggesting that the purified rhMMP-2 was correctly folded. The method described here involves fewer steps, is less expensive, and is less prone to contamination with other proteinases and MMP inhibitors as compared to expression of rhMMP-2 in eukaryotic tissue culture. This protocol will facilitate the use of the full-length rhMMP-2 expressed in bacteria and will certainly help researchers to acquire new knowledge about the substrates and biological activities of this important proteinase. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.
Resumo:
Chondrocytes live isolated in the voluminous extracellular matrix of cartilage, which they secrete and is neither vascularized nor innervated. Nutrient and waste exchanges occur through diffusion leading to low oxygen tension around the cells. Consequently even normal cartilage under normal physiological conditions suffers from a poor reparative potential that predisposes to degenerative conditions, such as osteoarthritis of the joints, with significant clinical effects.rnOne of the key challenges in medicine is the structural and functional replacement of lost or damaged tissues. Current therapeutical approaches are to transplant cells, implant bioartificial tissues, and chemically induce regeneration at the site of the injury. None of them reproduces well the biological and biomechanical properties of hyaline cartilage.rnThis thesis investigates the re-differentiation of chondrocytes and the repair of cartilage mediated by signaling molecules, biomaterials, and factors provided in mixed cellular cultures (co-culture systems). As signaling molecules we have applied prostaglandin E2 (PGE2) and bone morphogenetic protein 1 (BMP-1) and we have transfected chondrocytes with BMP-1 expressing vectors. Our biomaterials have been hydrogels of type-I collagen and gelatin-based scaffolds designed to mimic the architecture and biochemistry of native cartilage and provide a suitable three-dimensional environment for the cells. We have brought chondrocytes to interact with osteosarcoma Cal 72 cells or with murine preosteoblastic KS483 cells, either in a cell-to-cell or in a paracrine manner.rnExogenous stimulation with PGE2 or BMP-1 did not improve the differentiation or the proliferation of human articular chondrocytes. BMP-1 induced chondrocytic de-differentiation in a dose-dependent manner. Prostaglandin stimulation from gelatin-based scaffolds (three-dimensional culture) showed a certain degree of chondrocyte re-differentiaton. Murine preosteoblastic KS483 cells had no beneficial effect on human articular chondrocytes jointly cultivated with them in hydrogels of type I collagen. Although the hydrogels provided the chondrocytes with a proper matrix in which the cells adopted their native morphology; additionally, the expression of chondrocytic proteoglycan increased in the co-cultures after two weeks. The co-culture of chondrocytes with osteoblast-like cells (in transwell systems) resulted in suppression of the regular de-differentiation program that passaged chondrocytes undergo when cultured in monolayers. Under these conditions, the extracellular matrix of the chondrocytes, rich in type-II collagen and aggrecan, was not transformed into the extracellular matrix characteristic of de-differentiated human articular chondrocytes, which is rich in type-I collagen and versican.rnThis thesis suggests novel strategies of tissue engineering for clinical attempts to improve cartilage repair. Since implants are prepared in vitro (ex-vivo) by expanding human articular chondrocytes (autologous or allogeneic), we conclude that it will be convenient to provide a proper three-dimensional support to the chondrocytes in culture, to supplement the culture medium with PGE2, and to stimulate chondrocytes with osteoblastic factors by cultivating them with osteoblasts.rn
Resumo:
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.
Resumo:
Introduction The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. Methods 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. Results The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. Conclusions The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome.
Resumo:
Background: The clinical use of an enamel matrix derivative (EMD) has been shown to promote formation of new cementum, periodontal ligament (PDL), and bone and to significantly enhance the clinical outcomes after regenerative periodontal surgery. It is currently unknown to what extent the bleeding during periodontal surgery may compete with EMD adsorption to root surfaces. The aim of this study is to evaluate the effect of blood interactions on EMD adsorption to root surfaces mimicking various clinical settings and to test their ability to influence human PDL cell attachment and proliferation. Methods: Teeth extracted for orthodontic reasons were subjected to ex vivo scaling and root planing and treated with 24% EDTA, EMD, and/or human blood in six clinically related settings to determine the ability of EMD to adsorb to root surfaces. Surfaces were analyzed for protein adsorption via scanning electron microscopy and immunohistochemical staining with an anti-EMD antibody. Primary human PDL cells were seeded on root surfaces and quantified for cell attachment and cell proliferation. Results: Plasma proteins from blood samples altered the ability of EMD to adsorb to root surfaces on human teeth. Samples coated with EMD lacking blood demonstrated a consistent even layer of EMD adsorption to the root surface. In vitro experiments with PDL cells demonstrated improved cell attachment and proliferation in all samples coated with EMD (irrespective of EDTA) when compared to samples containing human blood. Conclusion: Based on these findings, it is advised to minimize blood interactions during periodontal surgeries to allow better adsorption of EMD to root surfaces.
Resumo:
OBJECTIVE: Understanding of articular cartilage physiology, remodelling mechanisms, and evaluation of tissue engineering repair methods requires reference information regarding normal structural organization. Our goals were to examine the variation of cartilage cell and matrix morphology in different topographical areas of the adult human knee joint. METHODS: Osteochondral explants were acquired from seven distinct anatomical locations of the knee joints of deceased persons aged 20-40 years and prepared for analysis of cell, matrix and tissue morphology using confocal microscopy and unbiased stereological methods. Differences between locations were identified by statistical analysis. RESULTS: Medial femoral condyle cartilage had relatively high cell surface area per unit tissue volume in the superficial zone. In the transitional zone, meniscus-covered lateral tibia cartilage showed elevated chondrocyte densities compared to the rest of the knee while lateral femoral condyle cartilage exhibited particularly large chondrocytes. Statistical analyses indicated highly uniform morphology throughout the radial zone (lower 80% of cartilage thickness) in the knee, and strong similarities in cell and matrix morphologies among cartilage from the femoral condyles and also in the mediocentral tibial plateau. Throughout the adult human knee, the mean matrix volume per chondron was remarkably constant at approximately 224,000 microm(3), corresponding to approximately 4.6 x 10(6) chondrons per cm(3). CONCLUSIONS: The uniformity of matrix volume per chondron throughout the adult human knee suggests that cell-scale biophysical and metabolic constraints may place limitations on cartilage thickness, mechanical properties, and remodelling mechanisms. Data may also aid the evaluation of cartilage tissue engineering treatments in a site-specific manner. Results indicate that joint locations which perform similar biomechanical functions have similar cell and matrix morphologies; findings may therefore also provide clues to understanding conditions under which focal lesions leading to osteoarthritis may occur.
Resumo:
Advanced glycation end products (AGEs) may play a role in the pathogenesis of diabetic nephropathy, by modulating extracellular matrix turnover. AGEs are known to activate specific membrane receptors, including the receptor for AGE (RAGE). In the present study, we analyzed the various receptors for AGEs expressed by human mesangial cells and we studied the effects of glycated albumin and of carboxymethyl lysine on matrix protein and remodelling enzyme synthesis. Membrane RAGE expression was confirmed by FACS analysis. Microarray methods, RT-PCR, and Northern blot analysis were used to detect and confirm specific gene induction. Zymographic analysis and ELISA were used to measure the induction of tPA and PAI-1. We show herein that cultured human mesangial cells express AGE receptor type 1, type 2 and type 3 and RAGE. AGEs (200 microg/ml) induced at least a 2-fold increase in mRNA for 10 genes involved in ECM remodelling, including tPA, PAI-1 and TIMP-3. The increase in tPA synthesis was confirmed by fibrin zymography. The stimulation of PAI-1 synthesis was confirmed by ELISA. AGEs increased PAI-1 mRNA through a signalling pathway involving reactive oxygen species, the MAP kinases ERK-1/ERK-2 and the nuclear transcription factor NF-kappaB, but not AP-1. Carboxymethyl lysine (CML, 5 microM), which is a RAGE ligand, also stimulated PAI-1 synthesis by mesangial cells. In addition, a blocking anti-RAGE antibody partially inhibited the AGE-stimulated gene expression and decreased the PAI-1 accumulation induced by AGEs and by CML. Inhibition of AGE receptors or neutralization of the protease inhibitors TIMP-3 and PAI-1 could represent an important new therapeutic strategy for diabetic nephropathy.
Resumo:
Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.