984 resultados para hormone receptor
Resumo:
Nuclear hormone receptors are potent repressors of transcription in the unliganded state. We describe here the cloning of a nuclear receptor corepressor that we call SUN-CoR (Small Unique Nuclear receptor CoRepressor), which shows no homology to previously described nuclear hormone receptor corepressors, N-CoR, or SMRT. SUN-CoR is a highly basic, 16-kDa nuclear protein that is expressed at high levels in adult tissues and is induced during adipocyte and myogenic differentiation. SUN-CoR potentiates transcriptional repression by thyroid hormone receptor and RevErb in vivo, represses transcription when fused to a heterologous DNA binding domain, and interacts with RevErb as well as with thyroid hormone receptor in vitro. SUN-CoR also interacts with N-CoR and SMRT in vitro and with endogenous N-CoR in cells. We conclude that SUN-CoR is a corepressor and may function as an additional component of the complex involved in transcriptional repression by unliganded and orphan nuclear hormone receptors.
Resumo:
The CDC37 gene is essential for the activity of p60v-src when expressed in yeast cells. Since the activation pathway for p60v-src and steroid hormone receptors is similar, the present study analyzed the hormone-dependent transactivation by androgen receptors and glucocorticoid receptors in yeast cells expressing a mutant version of the CDC37 gene. In this mutant, hormone-dependent transactivation by androgen receptors was defective at both permissive and restrictive temperatures, although transactivation by glucocorticoid receptors was mildly defective only at the restrictive temperature. Cdc37p appears to function via the androgen receptor ligand-binding domain, although it does not influence receptor hormone-binding affinity. Models for Cdc37p regulation of steroid hormone receptors are discussed.
Resumo:
Coactivators previously implicated in ligand-dependent activation functions by thyroid hormone receptor (TR) include p300 and CREB-binding protein (CBP), the steroid receptor coactivator-1 (SRC-1)-related family of proteins, and the multicomponent TR-associated protein (TRAP) complex. Here we show that two positive cofactors (PC2 and PC4) derived from the upstream stimulatory activity (USA) cofactor fraction act synergistically to mediate thyroid hormone (T3)-dependent activation either by TR or by a TR-TRAP complex in an in vitro system reconstituted with purified factors and DNA templates. Significantly, the TRAP-mediated enhancement of activation by TR does not require the TATA box-binding protein-associated factors of TFIID. Furthermore, neither the pleiotropic coactivators CBP and p300 nor members of the SRC-1 family were detected in either the TR-TRAP complex or the other components of the in vitro assay system. These results show that activation by TR at the level of naked DNA templates is enhanced by cooperative functions of the TRAP coactivators and the general coactivators PC2 and PC4, and they further indicate a potential functional redundancy between TRAPs and TATA box-binding protein-associated factors in TFIID. In conjunction with earlier studies on other nuclear receptor-interacting cofactors, the present study also suggests a multistep pathway, involving distinct sets of cofactors, for activation of hormone responsive genes.
Resumo:
In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.
Resumo:
Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.
Resumo:
Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.
Resumo:
To elucidate the role of thyroid hormone receptors (TRs) α1 and β in the development of hearing, cochlear functions have been investigated in mice lacking TRα1 or TRβ. TRs are ligand-dependent transcription factors expressed in the developing organ of Corti, and loss of TRβ is known to impair hearing in mice and in humans. Here, TRα1-deficient (TRα1−/−) mice are shown to display a normal auditory-evoked brainstem response, indicating that only TRβ, and not TRα1, is essential for hearing. Because cochlear morphology was normal in TRβ−/− mice, we postulated that TRβ regulates functional rather than morphological development of the cochlea. At the onset of hearing, inner hair cells (IHCs) in wild-type mice express a fast-activating potassium conductance, IK,f, that transforms the immature IHC from a regenerative, spiking pacemaker to a high-frequency signal transmitter. Expression of IK,f was significantly retarded in TRβ−/− mice, whereas the development of the endocochlear potential and other cochlear functions, including mechanoelectrical transduction in hair cells, progressed normally. TRα1−/− mice expressed IK,f normally, in accord with their normal auditory-evoked brainstem response. These results establish that the physiological differentiation of IHCs depends on a TRβ-mediated pathway. When defective, this may contribute to deafness in congenital thyroid diseases.
Resumo:
Congenital hypothyroidism and the thyroid hormone (T3) resistance syndrome are associated with severe central nervous system (CNS) dysfunction. Because thyroid hormones are thought to act principally by binding to their nuclear receptors (TRs), it is unexplained why TR knock-out animals are reported to have normal CNS structure and function. To investigate this discrepancy further, a T3 binding mutation was introduced into the mouse TR-β locus by homologous recombination. Because of this T3 binding defect, the mutant TR constitutively interacts with corepressor proteins and mimics the hypothyroid state, regardless of the circulating thyroid hormone concentrations. Severe abnormalities in cerebellar development and function and abnormal hippocampal gene expression and learning were found. These findings demonstrate the specific and deleterious action of unliganded TR in the brain and suggest the importance of corepressors bound to TR in the pathogenesis of hypothyroidism.
Resumo:
CHR3 (nhr-23, NF1F4), the homologue of Drosophila DHR3 and mammalian ROR/RZR/RevErbA nuclear hormone receptors, is important for proper epidermal development and molting in the nematode Caenorhabditis elegans. Disruption of CHR3 (nhr-23) function leads to developmental changes, including incomplete molting and a short, fat (dumpy) phenotype. Here, we studied the role of CHR3 during larval development by using expression assays and RNA-mediated interference. We show that the levels of expression of CHR3 (nhr-23) cycle during larval development and reduction of CHR3 function during each intermolt period result in defects at all subsequent molts. Assaying candidate gene expression in populations of animals treated with CHR3 (nhr-23) RNA-mediated interference has identified dpy-7 as a potential gene acting downstream of CHR3. These results define CHR3 as a critical regulator of all C. elegans molts and begin to define the molecular pathway for its function.
Resumo:
Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive Gαq coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2–16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.
Resumo:
Melanin-concentrating hormone (MCH), a neuropeptide expressed in central and peripheral nervous systems, plays an important role in the control of feeding behaviors and energy metabolism. An orphan G protein-coupled receptor (SLC-1/GPR24) has recently been identified as a receptor for MCH (MCHR1). We report here the identification and characterization of a G protein-coupled receptor as the MCH receptor subtype 2 (MCHR2). MCHR2 has higher protein sequence homology to MCHR1 than any other G protein-coupled receptor. The expression of MCHR2 has been detected in many regions of the brain. In contrast to MCHR1, which is intronless in the coding region and is located at the chromosomal locus 22q13.3, the MCHR2 gene has multiple exons and is mapped to locus 6q21. MCHR2 is specifically activated by nanomolar concentrations of MCH, binds to MCH with high affinity, and signals through Gq protein. This discovery is important for a full understanding of MCH biology and the development of potential therapeutics for diseases involving MCH, including obesity.
Resumo:
Two isoforms of the human growth hormone receptor (hGHR), which differ in the presence (hGHRwt) or absence (hGHRd3) of exon 3, are expressed in the placenta. Specifically, three expression patterns are observed: only hGHRwt, only hGHRd3, or an approximately 1:1 combination of both isoforms. We investigated several potential regulatory mechanisms which might account for the expression of the hGHR isoforms. The frequency of hGHRd3 expression did not change when placentas from differing stages of gestation were examined, suggesting splicing was not developmentally regulated. However, when hGHR isoform expression patterns were examined in each component of a given placenta, it was evident that alternative splicing of exon 3 is individual-specific. Surprisingly, the individual-specific regulation of hGHR isoforms appears to be the result of a polymorphism in the hGHR gene. We analyzed hGHRwt and hGHRd3 expression in Hutterite pedigrees, and our results are consistent with a simple Mendelian inheritance of two differing alleles in which exon 3 is spliced in an "all-or-none" fashion. We conclude the alternative splicing of exon 3 in hGHR transcripts is the result of an unusual polymorphism which significantly alters splicing of the hGHR transcript and that the relatively high frequency (approximately 10%) of homozygous hGHRd3 expression suggests the possibility it may play a role in polygenic determined events.
Resumo:
p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.
Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator.
Resumo:
The estrogen receptor (ER), a member of a large superfamily of nuclear hormone receptors, is a ligand-inducible transcription factor that regulates the expression of estrogen-responsive genes. The ER, in common with other members of this superfamily, contains two transcription activation functions (AFs)--one located in the amino-terminal region (AF-1) and the second located in the carboxyl-terminal region (AF-2). In most cell contexts, the synergistic activity of AF-1 and AF-2 is required for full estradiol (E2)-stimulated activity. We have previously shown that a ligand-dependent interaction between the two AF-containing regions of ER was promoted by E2 and the antiestrogen trans-hydroxytamoxifen (TOT). This interaction, however, was transcriptionally productive only in the presence of E2. To explore a possible role of steroid receptor coactivators in transcriptional synergism between AF-1 and AF-2, we expressed the amino terminal (AF-1-containing) and carboxyl-terminal (AF-2-containing) regions of ER as separate polypeptides in mammalian cells, along with the steroid receptor coactivator-1 protein (SRC-1). We demonstrate that SRC-1, which has been shown to significantly increase ER transcriptional activity, enhanced the interaction, mediated by either E2 or TOT, between the AF-1-containing and AF-2-containing regions of the ER. However, this enhanced interaction resulted in increased transcriptional effectiveness only with E2 and not with TOT, consistent with the effects of SRC-1 on the full-length receptor. Our results suggest that after ligand binding, SRC-1 may act, in part, as an adapter protein that promotes the integration of amino- and carboxyl-terminal receptor functions, allowing for full receptor activation. Potentially, SRC-1 may be capable of enhancing the transcriptional activity of related nuclear receptor superfamily members by facilitating the productive association of the two AF-containing regions in these receptors.
Resumo:
Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation.