949 resultados para honey orange
Resumo:
The defensive strategy of amphibians against predator attack relies heavily on the secretion of noxious/toxic chemical cocktails from specialized skin granular glands. Bioactive peptides constitute a major component of secretions in many species and the most complex are produced by neotropical leaf frogs of the sub-family Phyllomedusinae. We recently reported that these skin secretions contain elements of both the granular gland peptidome and transcriptome and that polyadenylated mRNAs constituting the latter are protected from degradation by interactions with endogenous amphipathic peptides. This thus permits parallel amino acid sequencing of peptides and nucleic acid sequencing of cloned precursor transcripts from single lyophilized samples of secretion. Here we report that the protection afforded is sufficiently robust to permit transcriptome studies by cloning of full-length polyadenylated peptide precursor encoding mRNAs from libraries constructed using ambient temperature air-dried skin from recently deceased specimens as source material. The technique was sufficiently sensitive to permit the identification of cDNAs encoding antimicrobial peptides constituted by six different isoforms of phylloseptin and two dermaseptins. Also, for the first time, establishment of the nucleic acid and amino acid sequence of the precursor encoding the phyllomedusine frog skin bradykinin-related peptide, phyllokinin, from cloned cDNA, was achieved. These data unequivocally demonstrate that the granular gland transcriptome persists in air-dried amphibian skin—a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.
Resumo:
The economically most important honey bee species, Apis mellifera, was formerly considered to be parasitized by one microsporidian, Nosema apis. Recently, [Higes, M., Martin, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93-95] and [Huang, W.-F., Jiang, J.-H., Chen, Y.-W., Wang, C.-H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30-37] used 16S (SSU) rRNA gene sequences to demonstrate the presence of Nosema ceranae in A. mellifera from Spain and Taiwan, respectively. We developed a rapid method to differentiate between N. apis and N. ceranae based on PCR-RFLPs of partial SSU rRNA. The reliability of the method was confirmed by sequencing 29 isolates from across the world (N = 9 isolates gave N. apis RFLPs and sequences, N = 20 isolates gave N. ceranae RFLPs and sequences; 100%, correct classification). We then employed the method to analyze N = 115 isolates from across the world. Our data, combined with N = 36 additional published sequences demonstrate that (i) N. ceranae most likely jumped host to A. mellifera, probably within the last decade, (ii) that host colonies and individuals may be co-infected by both microsporidia species, and that (iii) N. ceranae is now a parasite of A. mellifera across most of the world. The rapid, long-distance dispersal of N. ceranae is likely due to transport of infected honey bees by commercial or hobbyist beekeepers. We discuss the implications of this emergent pathogen for worldwide beekeeping. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Nosema ceranae is an emergent and potentially virulent pathogen of the honey bee (Apis mellifera) that has spread across the world in the last 10 or so years. Its precise origin and timing of spread are currently unclear because of a lack of appropriate genetic markers and inadequate sampling in putative Asian source populations. Though it has been dismissed as a cause of CCD in the USA based on correlational analyses of snapshot sampling of diseased hives, observations of naturally infected colonies suggest that it leads to colony collapse in Spain. Experiments are sorely needed to investigate its impact on individuals and colonies, and to pin down a causal relationship between N. ceranae and colony collapse. Whether N. ceranae is displacing N. apis is uncertain. For temperate zone apiculturalists, global climate change may mean that N. ceranae presents more of a challenge than has hitherto been considered the case.
Resumo:
Deformed wing virus (DWV) represents an ideal model to study the interaction between mode of transmission and virulence in honey bees since it exhibits both horizontal and vertical transmissions. However, it is not yet clear if venereal-vertical transmission represents a regular mode of transmission for this virus in natural honey bee populations. Here, we provide clear evidence for the occurrence of high DWV titres in the endophallus of sexually mature drones collected from drone congregation areas (DCAs). Furthermore, the endophallus DWV titres of drones collected at their maternal hives were no different from drones collected at nearby DCAs, suggesting that high-titre DWV infection of the endophallus does not hinder the ability of drones to reach the mating area. The results are discussed within the context of the dispersal of DWV between colonies and the definition of DWV virulence with respect to the transmission route and the types of tissues infected.
Resumo:
The observed adsorption of acid orange 7, AO7(-), on P25 titania over a range of pH values (pH 2-8) gives a good fit to data generated using a charge distribution, multisite complexation, i.e. CD-MUSIC, model, modified for aggregated dye adsorption. For this system the model predicts that both the apparent dark Langmuir adsorption constant. K-L, and the number of adsorption sites, n(o), increase with decreasing pH, and are negligible above pH 6. At pH 2 the CD-MUSIC model predicts the fraction of singly co-ordinated sites occupied by the dye,f(AO7), is ca. 32% under the in situ monitoring experimental conditions used in this work to study the photocatalytic bleaching of AO7(-) under UV light illumination ([TiO2] = 20 mgdm(-3); [AO7(-)](total) = 4.86 x 10(-5) M). Although AO7(-) adsorption on P25 titania is insignificant above pH 6 and increases almost linearly and markedly below this pH, the measured initial rate of bleaching of AO7(-), photocatalysed by titania using UV appears to only increase modestly (
Resumo:
The kinetics of photoreduction of methyl orange by ascorbic acid sensitized by colloidal CdS has been studied. Different experimental factors such a [O2], pH and temperature, as well as the presence of potential competitive species like MV2+ and Cd2+ have been taken as variables in this study. O2 and Cd2+ clearly inhibit the photoreduction but the presence of MV2+ increases the reaction rate. The pH greatly influences the kinetics and temperature (T) has little effect. The results are interpreted using a reaction scheme proposed in earlier papers where dispersions of crystalline CdS were used as the photocatalyst and EDTA as the hole scavenger.
Resumo:
The kinetics of photoreduction of methyl orange by ethylenediaminetetraacetic acid (EDTA) sensitized by colloidal CdS are reported as a function of [methyl orange], [O2] and [EDTA]. The results are interpreted using a reaction scheme which was proposed in an earlier paper for the same reaction sensitized by a powdered dispersion of highly crystalline CdS. An analysis of the results for the CdS colloid based on this reaction scheme shows that the rate of dye reduction by photogenerated electrons is approximately 50 times greater than the rate of oxygen reduction and the rate of scavenging of the photogenerated holes is approximately 7000 times greater than the rate of recombination. These findings are discussed in the light of similar observations reported for powdered CdS.
Resumo:
Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 µg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 µg/kg by ELISA which correlated to >10 µg/kg by LC-MS/MS.