990 resultados para historical climate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To evaluate whether observed geographical shifts in the distribution of the blue-winged macaw (Primolius maracana) are related to ongoing processes of global climate change. This species is vulnerable to extinction and has shown striking range retractions in recent decades, withdrawing broadly from southern portions of its historical distribution. Its range reduction has generally been attributed to the effects of habitat loss; however, as this species has also disappeared from large forested areas, consideration of other factors that may act in concert is merited.Location Historical distribution of the blue-winged macaw in Brazil, eastern Paraguay and northern Argentina.Methods We used a correlative approach to test a hypothesis of causation of observed shifts by reduction of habitable areas mediated by climate change. We developed models of the ecological niche requirements of the blue-winged macaw, based on point-occurrence data and climate scenarios for pre-1950 and post-1950 periods, and tested model predictivity for anticipating geographical distributions within time periods. Then we projected each model to the other time period and compared distributions predicted under both climate scenarios to assess shifts of habitable areas across decades and to evaluate an explanation for observed range retractions.Results Differences between predicted distributions of the blue-winged macaw over the twentieth century were, in general, minor and no change in suitability of landscapes was predicted across large areas of the species' original range in different time periods. No tendency towards range retraction in the south was predicted, rather conditions in the southern part of the species' range tended to show improvement for the species.Main conclusions Our test permitted elimination of climate change as a likely explanation for the observed shifts in the distribution of the blue-winged macaw, and points rather to other causal explanations (e.g. changing regional land use, emerging diseases).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes Bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are significant, fundamental changes taking place in global air and sea surface temperatures and sea levels. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change noted that many of the warmest years on the instrumental record of global surface temperatures have occurred within the last twelve years, i.e. 1995-2006 (IPCC, 2007). The Caribbean tourism product is particularly vulnerable to climate change. On the demand side, mitigation measures in other countries – for example, measures to reduce the consumption of fossil fuels – could have implications for airfares and cruise prices and, therefore, for the demand for travel, particularly to long-haul destinations such as the Caribbean (Clayton, 2009). On the supply side, sea level rise will cause beaches to disappear and damage coastal resorts. Changes in the frequency and severity of hurricanes are likely to magnify that damage. Other indirect impacts on the tourism product include rising insurance premiums and competition for water resources (Cashman, Cumberbatch, & Moore, 2012). The present report has used information on historic and future Caribbean climate data to calculate that the Caribbean tourism climatic index (TCI) ranges from −20 (impossible) to +100 (ideal). In addition to projections for the Caribbean, the report has produced TCI projections for the New York City area (specifically, Central Park), which have been used as comparators for Caribbean country projections. The conditions in the source market provide a benchmark against which visitors may judge their experience in the tourism destination. The historical and forecasted TCIs for the Caribbean under both the A2 and B2 climate scenarios of the IPCC suggest that climatic conditions in the Caribbean are expected to deteriorate, and are likely to become less conducive to tourism. More specifically, the greatest decline in the TCI is likely to occur during the northern hemisphere summer months from May to September. At the same time, the scenario analysis indicates that home conditions during the traditional tourist season (December – April) are likely to improve, which could make it more attractive for visitors from these markets to consider ‘staycations’ as an alternative to overseas trips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, an attempt is made to assess the economic impact of climate change on nine countries in the Caribbean basin: Aruba, Barbados, Dominican Republic, Guyana, Jamaica, Montserrat, Netherlands Antilles, Saint Lucia and Trinidad and Tobago. A methodological approach proposed by Dell et al. (2008) is used in preference to the traditional Integrated Assessment Models. The evolution of climate variables and of the macroeconomy of each of the nine countries over the period 1970 to 2006 is analyzed and preliminary evidence of a relationship between the macroeconomy and climate change is examined. The preliminary investigation uses correlation, Granger causality and simple regression methods. The preliminary evidence suggests that there is some relationship but that the direction of causation between the macroeconomy and the climate variables is indeterminate. The main analysis involves the use of a panel data (random effects) model which fits the historical data (1971-2007) very well. Projections of economic growth from 2008 to 2099 are done on the basis of four climate scenarios: the International Panel on Climate Change A2, B2, a hybrid A2B2 (the mid-point of A2 and B2), and a ‘baseline’ or ‘Business as Usual’ scenario, which assumes that the growth rate in the period 2008-2099 is the same as the average growth rate over the period 1971-2007. The best average growth rate is under the B2 scenario, followed by the hybrid A2B2 and A2 scenarios, in that order. Although negative growth rates eventually dominate, they are largely positive for a long time. The projections all display long-run secular decline in growth rates notwithstanding short-run upward trends, including some very sharp ones, moving eventually from declining positive rates to negative ones. The costs associated with the various scenarios are all quite high, rising to as high as a present value (2007 base year) of US$14 billion in 2099 (constant 1990 prices) for the B2 scenario and US$21 billion for the BAU scenario. These costs were calculated on the basis of very conservative estimates of the cost of environmental degradation. Mitigation and adaptation costs are likely to be quite high though a small fraction of projected total investment costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The agricultural sector‟s contribution to GDP and to exports in Jamaica has been declining with the post-war development process that has led to the differentiation of the economy. In 2010, the sector contributed 5.8% of GDP, and 3% to the exports (of goods), but with 36% of employment, it continues to be a major employer. With a little less than half of the population living in rural communities, agricultural activities, and their linkages with other economic activities, continue to play an important role as a source of livelihoods, and by extension, the economic development of the country. Sugar cane cultivation has, with the exception of a couple of decades in the twentieth century when it was superseded by bananas, dominated the agricultural export sector for centuries as the source of the raw materials for the manufacture of sugar for export. In 2005, sugar cane itself accounted for 6.4% of the sector‟s contribution to GDP, and 52% of the contribution of agricultural exports to GDP. Production for the domestic market has long been the larger subsector, organized around the production of root crops, especially yams, vegetables and condiments. To analyse the potential impact of climate change on the agricultural sector, this study selected three important crops for detailed examination. In particular, the study selected sugar cane because of its overwhelming importance to the export subsector of agriculture, and yam and escallion for both their contribution to the domestic subsector as well as the preeminent role yams and escallion play in the economic activities of the communities in the hills of central Jamaica, and the plains of the southwest respectively. As with other studies in this project, the methodology adopted was to compare the estimated values of output on the SRES A2 and B2 Scenarios with the value of output on a “baseline” Business As Usual (BAU), and then estimate the net benefits of investment in the relevant to climate change for the selected crops. The A2 and B2 Scenarios were constructed by applying forecasts of changes in temperature and precipitation generated by INSMET from ECHAM inspired climate models. The BAU “baseline” was a linear projection of the historical trends of yields for each crop. Linear models of yields were estimated for each crop with particular attention to the influence of the two climate variables – temperature and precipitation. These models were then used to forecast yields up to 2050 (table1). These yields were then used to estimate the value of output of the selected crop, as well as the contribution to overall GDP, on each Scenario. The analysis suggested replanting sugar cane with heat resistant varieties, rehabilitating irrigation systems where they existed, and establishing technologically appropriate irrigation systems where they were not for the three selected crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Montserrat. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009, there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. Besides temperature, there is also the threat of wind speeds. Since the early 20th century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Montserrat, the estimated damage from four windstorms (including hurricanes) affecting the island was US$260 million or almost five times 2009 gross domestic product (GDP). Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. The report attempted to quantify the likely effects of the changes in the climatic factors mentioned above. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations as well as those under two likely climate scenarios: A2 and B2. The results suggest that under both scenarios, the island’s key tourism climatic features will likely decline and therefore negatively impact on the destination experience of visitors. Including this tourism climatic index in a tourism demand model suggests that this would translate into losses of around 145% of GDP. As it relates to coral reefs, the value of the damage due to the loss of coral reefs was estimated at 7.6 times GDP, while the damage due to land loss for the tourism industry was 45% of GDP. The total cost of climate change for the tourism industry was therefore projected to be 9.6 times 2009 GDP over a 40-year horizon. Given the potential for significant damage to the industry, a large number of potential adaptation measures were considered. Out of these, a short-list of 9 potential options was selected using 10 evaluation criteria. These included: (a) Increasing recommended design wind speeds for new tourism-related structures; (b) Construction of water storage tanks; (c) Irrigation network that allows for the recycling of waste water; (d) Enhanced reef monitoring systems to provide early warning alerts of bleaching events; (e) Deployment of artificial reefs and fish-aggregating devices; (f) Developing national evacuation and rescue plans; (g) Introduction of alternative attractions; (h) Providing re-training for displaced tourism workers, and; (i) Revised policies related to financing national tourism offices to accommodate the new climatic realities Using cost-benefit analysis, three options were put forward as being financially viable and ready for immediate implementation: (a) Increase recommended design speeds for new tourism-related structures; (b) Enhance reef monitoring systems to provide early warning alerts of bleaching events, and; (c) Deploy artificial reefs or fish-aggregating devices. While these options had positive benefit cost ratios, other options were also recommended based on their non-tangible benefits: an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climatic realities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Saint Lucia. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009 there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. In addition to temperature, there is also the threat of increased wind speeds. Since the early twentieth century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Saint Lucia, the estimated damage from 12 windstorms (including hurricanes) affecting the island was US$1 billion or about 106% of 2009 GDP. Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. This report attempted to quantify the likely effects of the changes in the climatic factors mentioned above on the economy of Saint Lucia. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations, as well as those under two, likely, Special Report on Emissions Scenarios (SRES) climate scenarios: A2 and B2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proxy data are essential for the investigation of climate variability on time scales larger than the historical meteorological observation period. The potential value of a proxy depends on our ability to understand and quantify the physical processes that relate the corresponding climate parameter and the signal in the proxy archive. These processes can be explored under present-day conditions. In this thesis, both statistical and physical models are applied for their analysis, focusing on two specific types of proxies, lake sediment data and stable water isotopes.rnIn the first part of this work, the basis is established for statistically calibrating new proxies from lake sediments in western Germany. A comprehensive meteorological and hydrological data set is compiled and statistically analyzed. In this way, meteorological times series are identified that can be applied for the calibration of various climate proxies. A particular focus is laid on the investigation of extreme weather events, which have rarely been the objective of paleoclimate reconstructions so far. Subsequently, a concrete example of a proxy calibration is presented. Maxima in the quartz grain concentration from a lake sediment core are compared to recent windstorms. The latter are identified from the meteorological data with the help of a newly developed windstorm index, combining local measurements and reanalysis data. The statistical significance of the correlation between extreme windstorms and signals in the sediment is verified with the help of a Monte Carlo method. This correlation is fundamental for employing lake sediment data as a new proxy to reconstruct windstorm records of the geological past.rnThe second part of this thesis deals with the analysis and simulation of stable water isotopes in atmospheric vapor on daily time scales. In this way, a better understanding of the physical processes determining these isotope ratios can be obtained, which is an important prerequisite for the interpretation of isotope data from ice cores and the reconstruction of past temperature. In particular, the focus here is on the deuterium excess and its relation to the environmental conditions during evaporation of water from the ocean. As a basis for the diagnostic analysis and for evaluating the simulations, isotope measurements from Rehovot (Israel) are used, provided by the Weizmann Institute of Science. First, a Lagrangian moisture source diagnostic is employed in order to establish quantitative linkages between the measurements and the evaporation conditions of the vapor (and thus to calibrate the isotope signal). A strong negative correlation between relative humidity in the source regions and measured deuterium excess is found. On the contrary, sea surface temperature in the evaporation regions does not correlate well with deuterium excess. Although requiring confirmation by isotope data from different regions and longer time scales, this weak correlation might be of major importance for the reconstruction of moisture source temperatures from ice core data. Second, the Lagrangian source diagnostic is combined with a Craig-Gordon fractionation parameterization for the identified evaporation events in order to simulate the isotope ratios at Rehovot. In this way, the Craig-Gordon model can be directly evaluated with atmospheric isotope data, and better constraints for uncertain model parameters can be obtained. A comparison of the simulated deuterium excess with the measurements reveals that a much better agreement can be achieved using a wind speed independent formulation of the non-equilibrium fractionation factor instead of the classical parameterization introduced by Merlivat and Jouzel, which is widely applied in isotope GCMs. Finally, the first steps of the implementation of water isotope physics in the limited-area COSMO model are described, and an approach is outlined that allows to compare simulated isotope ratios to measurements in an event-based manner by using a water tagging technique. The good agreement between model results from several case studies and measurements at Rehovot demonstrates the applicability of the approach. Because the model can be run with high, potentially cloud-resolving spatial resolution, and because it contains sophisticated parameterizations of many atmospheric processes, a complete implementation of isotope physics will allow detailed, process-oriented studies of the complex variability of stable isotopes in atmospheric waters in future research.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Government policies play a critical role in influencing market conditions, institutions and overall agricultural productivity. The thesis therefore looks into the history of agriculture development in India. Taking a political economy perspective, the historical account looks at significant institutional and technological innovations carried out in pre- independent and post independent India. It further focuses on the Green Revolution in Asia, as forty years after; the agricultural community still faces the task of addressing recurrent issue of food security amidst emerging challenges, such as climate change. It examines the Green Revolution that took place in India during the late 1960s and 70s in a historical perspective, identifying two factors of institutional change and political leadership. Climate change in agriculture development has become a major concern to farmers, researchers and policy makers alike. However, there is little knowledge on the farmers’ perception to climate change and to the extent they coincide with actual climatic data. Using a qualitative approach,it looks into the perceptions of the farmers in four villages in the states of Maharashtra and Andhra Pradesh. While exploring the adaptation strategies, the chapter looks into the dynamics of who can afford a particular technology and who cannot and what leads to a particular adaptation decision thus determining the adaptive capacity in water management. The final section looks into the devolution of authority for natural resource management to local user groups through the Water Users’ Associations as an important approach to overcome the long-standing challenges of centralized state bureaucracies in India. It addresses the knowledge gap of why some local user groups are able to overcome governance challenges such as elite capture, while others-that work under the design principles developed by Elinor Ostrom. It draws conclusions on how local leadership, can be promoted to facilitate participatory irrigation management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two main areas were examined in this project: * The detailed climatic history of the second part of the Holocene (approximately the last 5500 calendar years) for the Zapadnodvinskaya lowland, making it possible to reconstruct general climatic changes in eastern Europe (taking other palynological, dendrochronological, historical and instrumental data into account). * The most important historical events for the period of the 9th-17th centuries that had an impact on Russian history. The comparative chronology of the main climatic changes and events of Russian social history showed that as local climatic conditions became worse (i.e. falling average annual temperature or precipitation rate) the density of significant events in society rose. This suggests that climatic deterioration is both a stimulus and an outstanding factor in social development.