928 resultados para high speed counter-current chromatography
Resumo:
Several recent studies have demonstrated differences in safety between different types of left-turn phasing—protected, permitted, and protected/permitted phasing. The issue in question is whether older and younger drivers are more affected by a particular type of left-turn phasing at high-speed signalized intersections and whether they are more likely to contribute to a left-turn related crash under a specific type of left-turn phasing. This study evaluated the impact of different types of left-turn phasing on older and younger drivers at high-speed signalized intersections in Iowa. High-speed signalized intersections were of interest since oncoming speeds and appropriate gaps may be more difficult to judge for older drivers and those with less experience. A total of 101 intersections from various urban locations in Iowa with at least one intersecting roadway with a posted speed limit of 45 mph or higher were evaluated. Left-turn related crashes from 2001 to 2003 were evaluated. Left-turn crash rate and severity for young drivers (14- to 24-year-old), middle-age drivers (25- to 64-year-old), and older drivers (65 years and older) were calculated. Poisson regression was used to analyze left-turn crash rates by age group and type of phasing. Overall, left-turn crash rates indicated that protected phasing is much safer than protected/permitted and permitted phasing. Protected/permitted phasing had the highest left-turn crash rates overall.
Resumo:
Part 6 of the Manual on Uniform Traffic Control Devices (MUTCD) describes several types of channelizing devices that can be used to warn road users and guide them through work zones; these devices include cones, tubular markers, vertical panels, drums, barricades, and temporary raised islands. On higher speed/volume roadways, drums and/or vertical panels have been popular choices in many states, due to their formidable appearance and the enhanced visibility they provide when compared to standard cones. However, due to their larger size, drums also require more effort and storage space to transport, deploy and retrieve. Recent editions of the MUTCD have introduced new devices for channelizing; specifically of interest for this study is a taller (>36 inches) but thinner cone. While this new device does not offer a comparable target value to that of drums, the new devices are significantly larger than standard cones and they offer improved stability as well. In addition, these devices are more easily deployed and stored than drums and they cost less. Further, for applications previously using both drums and tall cones, the use of tall cones only provides the ability for delivery and setup by a single vehicle. An investigation of the effectiveness of the new channelizing devices provides a reference for states to use in selecting appropriate traffic control for high speed, high volume applications, especially for short term or limited duration exposures. This study includes a synthesis of common practices by state DOTs, as well as daytime and nighttime field observations of driver reactions using video detection equipment. The results of this study are promising for the day and night performance of the new tall cones, comparing favorably to the performance of drums when used for channelizing in tapers. The evaluation showed no statistical difference in merge distance and location, shy distance, or operating speed in either daytime or nighttime conditions. The study should provide a valuable resource for state DOTs to utilize in selecting the most effective channelizing device for use on high speed/high volume roadways where timely merging by drivers is critical to safety and mobility.
Resumo:
The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.
Resumo:
The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.
Resumo:
This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen theknowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery to the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Braytoncycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of the future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. The high speed machinery concept allows one to build an application with only one rotating shaft including all the major parts: the high speed motor, the compressor and the turbine wheel. The use of oil free bearings and high rotational speed outlines give several advantages compared to conventional machineries: light weight, compact structure, safe operation andhigher efficiency at a large operational region. There are always problems whentheory is applied to practice. The calibrations of pressure, temperature and humidity probes were made with care but still measurable errors were not negligible. Several different separators were examined and in all cases the content of the separated water was not exact. Due to the compact sizes and structures of the prototypes, the process measurement was slightly difficult. The experimental results agree well with the theoretical calculations. These experiments prove the operation of the process and lay a ground for the further development. The results of this work give very promising possibilities for the design of new, commercially competitive applications that use high speed machinery and the reversed Brayton cycle.
Resumo:
A method for the analysis of high-speed solid-rotor induction motors in presented. The analysis is based on a new combination of the three dimensional linear method and the transfer matrix method. Both saturation and finite length effects are taken into account. The active region of the solid rotor is divided into saturated and unsaturated parts. The time dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of smooth solid rotors manufactured of different materials. Six rotor materials are tested: three construction steels, pure iron, a cobaltiron alloy and an aluminium alloy. The results obtained by the method agree fairly well with the measurement quantities.
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.
Resumo:
In April 2009, the US government unveiled its blueprint for a national network of high-speed passenger rail (HSR) lines aimed at reducing traffic congestion, cutting national dependence on foreign oil and improving rural and urban environments. In implementing such a program, it is essential to identify the factors that might influence decision making and the eventual success of the HSR project, as well as foreseeing the obstacles that will have to be overcome.
Resumo:
The main objective of this thesis was to compare the efficiency of counter-current and co-current filter cake washing techniques. Filter cake washing is a common unit operation which is used in the chemical process industry for improving the recovery of the liquid phase or for purifying the solid phase of the filter cake. Counter-current displacement washing is more difficult to arrange and it requires additional process equipment but the advantage of counter-current method is that the consumption of wash water that is required for achieving certain filter cake purity may be considerably decreased when compared to the co-current washing method. This is true especially for materials that are difficult to wash. The literature part of this thesis consists of a review of filter cake washing in general, including the basic principles of co-current and counter-current techniques, and a description of the structure and operation of a horizontal vacuum belt filter, which is the equipment considered in the experimental part of this thesis. Also the most common cake washing models are introduced. The experiments were performed by washing wheat apatite filter cakes in a laboratory scale vacuum filter by using both co-current and counter-current washing methods. The main results of these tests were the washing curves that relate the purity of the filter cake to the amount of wash liquid used. Comparison between the obtained washing curves showed that both washing methods could be efficiently applied for achieving good washing results. The differences between the wash liquid consumptions in the co-current and counter-current washing methods were found to be surprisingly small but this is most probably explained by the relatively good washing characteristics of the apatite cakes. The washing models introduced in the literature part were compared with the results obtained from the experiments and it was found out that the studied cake washing processes could be described
Resumo:
The aim of this study was to evaluate different spray nozzles for land applications in high speed on the coverage and deposit in soybean plants pulverization. It was evaluated the AXI 110 04 plane jet nozzles operated at speed of 4.17m.s-1 (control), the grey APE and the AXI 110 08 plane jets, and the TD HiSpeed 110 06 and AXI TWIN 120 06 twin jets, at speed of 9.72m.s-1. The application volume was fixed in 120L ha-1. The application efficiency was evaluated by two different methods: analysis of the coverage area using fluorescent pigment and UV light and analysis of deposits through the recovery and quantification of FD&C N°1 brilliant blue marker by spectrophotometry. Both analyses were done in samples collected from top, middle and bottom parts of the plants. The spray nozzles showed differences in coverage and deposit pattern, so in the top part, the coverage was increased with smaller drops and the deposits were increased with medium drops. In the other parts of the plants, there were no statistical differences between the treatments for both coverage and deposits. The displacement speed did not influence the application efficiency for nozzles with the same drop pattern, and the obtained spray coverage and deposits at the medium and bottom parts of the plants were less than 50% of that found at the top of the soybean plants.
Resumo:
The aim of this thesis is to utilize the technology developed at LUT and to provide an easy tool for high-speed solid-rotor induction machine preliminary design. Computer aided design tool MathCAD has been chosen as the environment for realizing the calculation program. Four versions of the design program have been made depending on the motor rotor type. The first rotor type is an axially slitted solid-rotor with steel end rings. The next one is an axially slitted solid-rotor with copper end rings. The third machine type is a solid rotor with deep, rectangular copper bars and end rings (squirrel cage). And the last one is a solid-rotor with round copper bars and end rings (squirrel cage). Each type of rotor has its own specialties but a general thread of design is common. This paper follows the structure of the calculating program and explains some features and formulas. The attention is concentrated on the difference between laminated and solid-rotor machine design principles. There is no deep analysis of the calculation ways are presented. References for all solution methods appearing during the design procedure are given for more detailed studying. This thesis pays respect to the latest innovations in solid-rotor machines theory. Rotor ends’ analytical calculation follows the latest knowledge in this field. Correction factor for adjusting the rotor impedance is implemented. The purpose of the created design program is to calculate the preliminary dimensions of the machine according to initial data. Obtained results are not recommended for exact machine development. Further more detailed design should be done in a finite element method application. Hence, this thesis is a practical tool for the prior evaluating of the high-speed machine with different solid-rotor types parameters.
Resumo:
The general trend towards increasing e ciency and energy density drives the industry to high-speed technologies. Active Magnetic Bearings (AMBs) are one of the technologies that allow contactless support of a rotating body. Theoretically, there are no limitations on the rotational speed. The absence of friction, low maintenance cost, micrometer precision, and programmable sti ness have made AMBs a viable choice for highdemanding applications. Along with the advances in power electronics, such as signi cantly improved reliability and cost, AMB systems have gained a wide adoption in the industry. The AMB system is a complex, open-loop unstable system with multiple inputs and outputs. For normal operation, such a system requires a feedback control. To meet the high demands for performance and robustness, model-based control techniques should be applied. These techniques require an accurate plant model description and uncertainty estimations. The advanced control methods require more e ort at the commissioning stage. In this work, a methodology is developed for an automatic commissioning of a subcritical, rigid gas blower machine. The commissioning process includes open-loop tuning of separate parts such as sensors and actuators. The next step is to apply a system identi cation procedure to obtain a model for the controller synthesis. Finally, a robust model-based controller is synthesized and experimentally evaluated in the full operating range of the system. The commissioning procedure is developed by applying only the system components available and a priori knowledge without any additional hardware. Thus, the work provides an intelligent system with a self-diagnostics feature and an automatic commissioning.
Resumo:
Higher travel speeds of rail vehicles will be possible by developing sophisticated top performance bogies having creep-controlled wheelsets. In this case the torque transmission between the right and the left wheel is realized by an actively controlled creep coupling. To investigate hunting stability and curving capability the linear equations of motion are written in state space notation. Simulation results are obtained with realistic system parameters from industry and various controller gains. The advantage of the creep-controlled wheelset" is discussed by comparison the simulation results with the dynamic behaviour of the special cases solid-axle wheelset" and loose wheelset" (independent rotation of the wheels). The stability is also investigated with a root-locus analysis.
On the development of an unstructured grid solver for inert and reactive high speed flow simulations
Resumo:
An unstructured grid Euler solver for reactive compressible flow applications is presented. The method is implemented in a cell centered, finite volume context for unstructured triangular grids. Three different schemes for spatial discretization are implemented and analyzed. Time march is implemented in a time-split fashion with independent integrators for the flow and chemistry equations. The capability implemented is tested for inert flows in a hypersonic inlet and for inert and reactive supersonic flows over a 2-D wedge. The results of the different schemes are compared with each other and with independent calculations using a structured grid code. The strengths and the possible weaknesses of the proposed methods are discussed.