963 resultados para high pass filters
Resumo:
In this paper, we estimate ERPT into imported input prices and export prices using disaggregated quarterly trade data for Switzerland over 2004–2011. We find evidence for high pass-through rates into imported input prices. This demonstrates the effectiveness of natural hedging. On the export side, ERPT exhibits substantial sectoral heterogeneity and changes in imported input costs are not transmitted to foreign consumers in most cases. This suggests the use of cheaper imported inputs to offset adverse effects of currency appreciation on export profit margins.
Resumo:
Includes bibliographical references (p. 58-59)
Resumo:
The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1, vertical canonical targets were detected faster when they were tilted (incongruent) than when they were vertical (congruent). This search asymmetry was reversed for tilted canonical targets. The effect of canonical orientation was partially preserved when objects were high-pass filtered, but it was eliminated when they were low-pass filtered, rendering them as unfamiliar shapes (Experiment 2). The effect of canonical orientation was also eliminated by inverting the objects (Experiment 3) and in a patient with visual agnosia (Experiment 4). These results indicate that orientation search with familiar objects can be modulated by canonical orientation, and they indicate a top-down influence on orientation processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Resumo:
The thesis will show how to equalise the effect of quantal noise across spatial frequencies by keeping the retinal flux (If-2) constant. In addition, quantal noise is used to study the effect of grating area and spatial frequency on contrast sensitivity resulting in the extension of the new contrast detection model describing the human contrast detection system as a simple image processor. According to the model the human contrast detection system comprises low-pass filtering due to ocular optics, addition of light dependent noise at the event of quantal absorption, high-pass filtering due to the neural visual pathways, addition of internal neural noise, after which detection takes place by a local matched filter, whose sampling efficiency decreases as grating area is increased. Furthermore, this work will demonstrate how to extract both the optical and neural modulation transfer functions of the human eye. The neural transfer function is found to be proportional to spatial frequency up to the local cut-off frequency at eccentricities of 0 - 37 deg across the visual field. The optical transfer function of the human eye is proposed to be more affected by the Stiles-Crawford -effect than generally assumed in the literature. Similarly, this work questions the prevailing ideas about the factors limiting peripheral vision by showing that peripheral optical acts as a low-pass filter in normal viewing conditions, and therefore the effect of peripheral optics is worse than generally assumed.
Resumo:
This thesis studied the effect of (i) the number of grating components and (ii) parameter randomisation on root-mean-square (r.m.s.) contrast sensitivity and spatial integration. The effectiveness of spatial integration without external spatial noise depended on the number of equally spaced orientation components in the sum of gratings. The critical area marking the saturation of spatial integration was found to decrease when the number of components increased from 1 to 5-6 but increased again at 8-16 components. The critical area behaved similarly as a function of the number of grating components when stimuli consisted of 3, 6 or 16 components with different orientations and/or phases embedded in spatial noise. Spatial integration seemed to depend on the global Fourier structure of the stimulus. Spatial integration was similar for sums of two vertical cosine or sine gratings with various Michelson contrasts in noise. The critical area for a grating sum was found to be a sum of logarithmic critical areas for the component gratings weighted by their relative Michelson contrasts. The human visual system was modelled as a simple image processor where the visual stimuli is first low-pass filtered by the optical modulation transfer function of the human eye and secondly high-pass filtered, up to the spatial cut-off frequency determined by the lowest neural sampling density, by the neural modulation transfer function of the visual pathways. The internal noise is then added before signal interpretation occurs in the brain. The detection is mediated by a local spatially windowed matched filter. The model was extended to include complex stimuli and its applicability to the data was found to be successful. The shape of spatial integration function was similar for non-randomised and randomised simple and complex gratings. However, orientation and/or phase randomised reduced r.m.s contrast sensitivity by a factor of 2. The effect of parameter randomisation on spatial integration was modelled under the assumption that human observers change the observer strategy from cross-correlation (i.e., a matched filter) to auto-correlation detection when uncertainty is introduced to the task. The model described the data accurately.
Resumo:
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MAT-LAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/(Mentaschi et al., 2016).
Resumo:
We demonstrate cascaded 100-Gb/s sub-channel add/drop from a 1-Tb/s multi-band OFDM super-channel having 2-GHz inter-sub-channel guard-bands within a recirculating loop via a hierarchical ROADM using high-resolution filters, showcasing 1000-km transmission reach and five ROADM node passages for the add/drop sub-channel when hybrid Raman-EDFA is implemented.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Resumo:
This paper presents a low complexity high efficiency decimation filter which can be employed in EletroCardioGram (ECG) acquisition systems. The decimation filter with a decimation ratio of 128 works along with a third order sigma delta modulator. It is designed in four stages to reduce cost and power consumption. The work reported here provides an efficient approach for the decimation process for high resolution biomedical data conversion applications by employing low complexity two-path all-pass based decimation filters. The performance of the proposed decimation chain was validated by using the MIT-BIH arrhythmia database and comparative simulations were conducted with the state of the art.
Resumo:
This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
Abstract is not available.