969 resultados para hierarchical rating method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels must be built using all the terms in the documents of the collection. This paper presents the SeCLAR method, which explores the use of association rules in the selection of good candidates for labels of hierarchical document clusters. The purpose of this method is to select a subset of terms by exploring the relationship among the terms of each document. Thus, these candidates can be processed by a classical method to generate the labels. An experimental study demonstrates the potential of the proposed approach to improve the precision and recall of labels obtained by classical methods only considering the terms which are potentially more discriminative. © 2012 - IOS Press and the authors. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Large gene expression studies, such as those conducted using DNA arrays, often provide millions of different pieces of data. To address the problem of analyzing such data, we describe a statistical method, which we have called ‘gene shaving’. The method identifies subsets of genes with coherent expression patterns and large variation across conditions. Gene shaving differs from hierarchical clustering and other widely used methods for analyzing gene expression studies in that genes may belong to more than one cluster, and the clustering may be supervised by an outcome measure. The technique can be ‘unsupervised’, that is, the genes and samples are treated as unlabeled, or partially or fully supervised by using known properties of the genes or samples to assist in finding meaningful groupings. Results: We illustrate the use of the gene shaving method to analyze gene expression measurements made on samples from patients with diffuse large B-cell lymphoma. The method identifies a small cluster of genes whose expression is highly predictive of survival. Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worth further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium-sized watersheds (72 000 and 66 000 km(2) of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi-arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m(3) s(-1)) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi-arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright. (C) 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The Conners Adult ADHD Rating Scales (CAARS) assess symptoms specific to adults that are frequently used and have been translated into German. The current study tests the factor structure of the CAARS in a large sample of German adults with ADHD and compares the means of the CAARS subscales with those of healthy German controls. Method: CAARS were completed by 466 participants with ADHD and 851 healthy control participants. Confirmatory factor analysis was used to establish model fit with the American original. Comparisons between participants with ADHD and healthy controls and influences of gender, age, and degree of education were analyzed. Results: Confirmatory factor analysis showed a very good fit with the model for the American original. Differences between ADHD participants and healthy controls on all Conners Adult ADHD Rating Scales-Self-Report (CAARS-S) subscales were substantial and significant. Conclusion: The factor structure of the original American model was successfully replicated in this sample of adult German ADHD participants. (J. of Att. Dis. 2012; XX(X) 1-XX).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A popular method for nasolabial rating in unilateral cleft lip and palate (UCLP) is the Asher-McDade system consisting of a 5-point ordinal scale assessing nasal form, nasal symmetry, nasal profile, and vermilion border. The aim of the current study was to identify reference photographs illustrating this scale to facilitate its use.Four observers assessed nasolabial appearance on frontal and profile photographs of the nasolabial area of 42 children of Caucasian origin with a repaired UCLP at age 9 years. Cronbachs alpha, based on the individual scores of the 4 observers, ranged from 0.73 to 0.82 for the 4 nasolabial ratings, indicating a good reliability. The reliability of the overall score (mean of the 4 component scores) was also high (Cronbachs alpha, 0.83). Both for the nasolabial component ratings and for the overall score, duplicate measurement errors were small. The reliability for the mean of the 4 observers' scores was good, Spearman rank correlation coefficients ranging from 0.56 to 0.96.Subsequently, photographs were selected that showed the highest agreement among observers. For each of the 4 components (eg, nasal form, nasal deviation, nasal profile, and shape of the vermilion border), 5 photographs were selected to illustrate the whole range of the scale (score, 1-5), resulting in the selection of 20 pictures.It was concluded that nasolabial appearance rating can be performed reliably using a panel of judges and averaging the scores of all observers. Reference photographs, as developed from this study, may facilitate the rating task.