892 resultados para hierarchical entropy
Resumo:
In the scenario of social bookmarking, a user browsing the Web bookmarks web pages and assigns free-text labels (i.e., tags) to them according to their personal preferences. In this technical report, we approach one of the practical aspects when it comes to represent users' interests from their tagging activity, namely the categorization of tags into high-level categories of interest. The reason is that the representation of user profiles on the basis of the myriad of tags available on the Web is certainly unfeasible from various practical perspectives; mainly concerning the unavailability of data to reliably, accurately measure interests across such fine-grained categorisation, and, should the data be available, its overwhelming computational intractability. Motivated by this, our study presents the results of a categorization process whereby a collection of tags posted at Delicious #http://delicious.com# are classified into 200 subcategories of interest.
Resumo:
The hypothesis of minimum entropy production is applied to a simple one-dimensional energy balance model and is analysed for different values of the radiative forcing due to greenhouse gases. The extremum principle is used to determine the planetary “conductivity” and to avoid the “diffusive” approximation, which is commonly assumed in this type of model. For present conditions the result at minimum radiative entropy production is similar to that obtained by applying the classical model. Other climatic scenarios show visible differences, with better behaviour for the extremal case
Resumo:
The CbrA/B system in pseudomonads is involved in the utilization of carbon sources and carbon catabolite repression (CCR) through the activation of the small RNAs crcZ in Pseudomonas aeruginosa, and crcZ and crcY in Pseudomonas putida. Interestingly, previous works reported that the CbrA/B system activity in P. aeruginosa PAO1 and P. putida KT2442 responded differently to the presence of different carbon sources, thus raising the question of the exact nature of the signal(s) detected by CbrA. Here, we demonstrated that the CbrA/B/CrcZ(Y) signal transduction pathway is similarly activated in the two Pseudomonas species. We show that the CbrA sensor kinase is fully interchangeable between the two species and, moreover, responds similarly to the presence of different carbon sources. In addition, a metabolomics analysis supported the hypothesis that CCR responds to the internal energy status of the cell, as the internal carbon/nitrogen ratio seems to determine CCR and non-CCR conditions. The strong difference found in the 2-oxoglutarate/glutamine ratio between CCR and non-CCR conditions points to the close relationship between carbon and nitrogen availability, or the relationship between the CbrA/B and NtrB/C systems, suggesting that both regulatory systems sense the same sort or interrelated signal.
Resumo:
Evidence of a sport-specific hierarchy of protective factors against doping would thus be a powerful aid in adapting information and prevention campaigns to target the characteristics of specific athlete groups, and especially those athletes most vulnerable for doping control. The contents of phone calls to a free and anonymous national anti-doping service called 'ecoute dopage' were analysed (192 bodybuilders, 124 cyclists and 44 footballers). The results showed that the protective factors that emerged from analysis could be categorised into two groups. The first comprised 'Health concerns', 'Respect for the law' and 'Doping controls from the environment' and the second comprised 'Doubts about the effectiveness of illicit products, 'Thinking skills' and 'Doubts about doctors'. The ranking of the factors for the cyclists differed from that of the other athletes. The ordering of factors was 1) respect for the law, 2) doping controls from the environment, 3) health concerns 4) doubts about doctors, and 5) doubts about the effectiveness illicit products. The results are analysed in terms of the ranking in each athlete group and the consequences on the athletes' experience and relationship to doping. Specific prevention campaigns are proposed to limit doping behaviour in general and for each sport.
Resumo:
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.
Resumo:
In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and theirlocations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.
Resumo:
The package HIERFSTAT for the statistical software R, created by the R Development Core Team, allows the estimate of hierarchical F-statistics from a hierarchy with any numbers of levels. In addition, it allows testing the statistical significance of population differentiation for these different levels, using a generalized likelihood-ratio test. The package HIERFSTAT is available at http://www.unil.ch/popgen/softwares/hierfstat.htm.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
We present a non-equilibrium theory in a system with heat and radiative fluxes. The obtained expression for the entropy production is applied to a simple one-dimensional climate model based on the first law of thermodynamics. In the model, the dissipative fluxes are assumed to be independent variables, following the criteria of the Extended Irreversible Thermodynamics (BIT) that enlarges, in reference to the classical expression, the applicability of a macroscopic thermodynamic theory for systems far from equilibrium. We analyze the second differential of the classical and the generalized entropy as a criteria of stability of the steady states. Finally, the extreme state is obtained using variational techniques and observing that the system is close to the maximum dissipation rate
Resumo:
The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Resumo:
The second differential of the entropy is used for analysing the stability of a thermodynamic climatic model. A delay time for the heat flux is introduced whereby it becomes an independent variable. Two different expressions for the second differential of the entropy are used: one follows classical irreversible thermodynamics theory; the second is related to the introduction of response time and is due to the extended irreversible thermodynamics theory. the second differential of the classical entropy leads to unstable solutions for high values of delay times. the extended expression always implies stable states for an ice-free earth. When the ice-albedo feedback is included, a discontinuous distribution of stable states is found for high response times. Following the thermodynamic analysis of the model, the maximum rates of entropy production at the steady state are obtained. A latitudinally isothermal earth produces the extremum in global entropy production. the material contribution to entropy production (by which we mean the production of entropy by material transport of heat) is a maximum when the latitudinal distribution of temperatures becomes less homogeneous than present values
Resumo:
We investigate the hypothesis that the atmosphere is constrained to maximize its entropy production by using a one-dimensional (1-D) vertical model. We prescribe the lapse rate in the convective layer as that of the standard troposphere. The assumption that convection sustains a critical lapse rate was absent in previous studies, which focused on the vertical distribution of climatic variables, since such a convective adjustment reduces the degrees of freedom of the system and may prevent the application of the maximum entropy production (MEP) principle. This is not the case in the radiative–convective model (RCM) developed here, since we accept a discontinuity of temperatures at the surface similar to that adopted in many RCMs. For current conditions, the MEP state gives a difference between the ground temperature and the air temperature at the surface ≈10 K. In comparison, conventional RCMs obtain a discontinuity ≈2 K only. However, the surface boundary layer velocity in the MEP state appears reasonable (≈3 m s-¹). Moreover, although the convective flux at the surface in MEP states is almost uniform in optically thick atmospheres, it reaches a maximum value for an optical thickness similar to current conditions. This additional result may support the maximum convection hypothesis suggested by Paltridge (1978)
Resumo:
The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.