911 resultados para heavy ion cancer therapy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study lepton pair production in heavy-ion collisions with emphasis on nonstandard contributions to the QED subprocess gamma-gamma --> l+l-. The existence of compositeness of fermions and/or bosons can be tested in this reaction up to the TeV mass scale. We show that for some processes the capabilities of relativistic heavy-ion colliders to disclose new physics surpass the possibilities of e+e- or ppBAR machines. In particular, spin-zero composite particles which couple predominantly to two photons, predicted in composite models, can be studied in a broad range of masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bag at temperature (T) with pressure B(T) = B(0)[1 - (T/T(c))4] is shown to be consistent with recent lattice data on the pi and the rho mesons. The limiting temperature, T(l), of the pion bag from the Bekenstein entropy bound is lower than that of other mesons. This agrees with the thermal distribution of pi, K and the rho in heavy ion collisions, which (unlike proton-nucleus or pp data) show a marked difference in T of pion and other mesons in the mid-rapidity region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate the cross-section for glueball production in peripheral heavy-ion collisions through two-photon and double-Pomeron exchange, at energies that will be available at RHIC and LHC. Glueballs will be produced at large rates, opening the possibility to study decays with very small branching ratios. In particular, we discuss the possibility of observing the subprocess γγ(PP) → G → γγ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlocal interactions are an intrinsically quantum phenomenon. In this work we point out that, in the context of heavy ions, such interactions can be studied through the refractive elastic scattering of these systems at intermediate energies. We show that most of the observed energy dependence of the local equivalent bare potential arises from the exchange nonlocality. The nonlocality parameter extracted from the data was found to be very close to the one obtained from folding models. The effective mass of the colliding, heavy-ion, system was found to be close to the nucleon effective mass in nuclear matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate the cross sections for the production of resonances, pion pairs, and a central cluster of hadrons in peripheral heavy-ion collisions through two-photon and double-pomeron exchange, at energies that will be available at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The effect of the impact parameter in the diffractive reactions is introduced, and by imposing the condition for realistic peripheral collisions we verify that in the case of very heavy ions the pomeron-pomeron contribution is indeed smaller than the electromagnetic one. However, they give a non-negligible background in the collision of light ions. This diffractive background will be more important at RHIC than at LHC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss processes leading to two photon final states in peripheral heavy ion collisions at RHIC. Due to the large photon luminosity we show that the continuum subprocess γγ→ γγ can be observed with a large number of events. We study this reaction when it is intermediated by a resonance made of quarks or gluons and discuss its interplay with the continuum process, verifying that in several cases the resonant process overwhelms the continuum one. It also investigated the possibility of observing a scalar resonance (the σ meson) in this process. Assuming for the σ the mass and total decay width values recently reported by the E791 Collaboration we show that RHIC may detect this particle in its two photon decay mode if its partial photonic decay width is of the order of the ones discussed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After five years of running at RHIC, and on the eve of the LHC heavy-ion program, we highlight the status of femtoscopic measurements. We emphasize the role interferometry plays in addressing fundamental questions about the state of matter created in such collisions, and present an enumerated list of measurements, analyses and calculations that are needed to advance the field in the coming years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Head and neck cancer (HNC) is the sixth most common human malignancy worldwide. The main forms of treatment for HNC are surgery, radiotherapy (RT) and chemotherapy (CT). However, the choice of therapy depends on the tumor staging and approaches, which are aimed at organ preservation. Because of systemic RT and CT genotoxicity, one of the important side effects is a secondary cancer that can result from the activity of radiation and antineoplastic drugs on healthy cells. Ionizing radiation can affect the DNA, causing single and double-strand breaks, DNA-protein crosslinks and oxidative damage. The severity of radiotoxicity can be directly associated with the radiation dosimetry and the dose-volume differences. Regarding CT, cisplatin is still the standard protocol for the treatment of squamous cell carcinoma, the most common cancer located in the oral cavity. However, simultaneous treatment with cisplatin, bleomycin and 5-fluorouracil or treatment with paclitaxel and cisplatin are also used. These drugs can interact with the DNA, causing DNA crosslinks, double and single-strand breaks and changes in gene expression. Currently, the late effects of therapy have become a recurring problem, mainly due to the increased survival of HNC patients. Herein, we present an update of the systemic activity of RT and CT for HNC, with a focus on their toxicogenetic and toxicogenomic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several dosimetric methods have been proposed for estimating red marrow absorbed dose (RMAD) when radionuclide therapy is planned for differentiated thyroid cancer, although to date, there is no consensus as to whether dose calculation should be based on blood-activity concentration or not. Our purpose was to compare RMADs derived from methods that require collecting patients' blood samples versus those involving OLINDA/EXM software, thereby precluding this invasive procedure. This is a retrospective study that included 34 patients under treatment for metastatic thyroid disease. A deviation of 10 between RMADs was found, when comparing the doses from the most usual invasive dosimetric methods and those from OLINDA/EXM. No statistical difference between the methods was discovered, whereby the need for invasive procedures when calculating the dose is questioned. The use of OLINDA/EXM in clinical routine could possibly diminish data collection, thus giving rise to a simultaneous reduction in time and clinical costs, besides avoiding any kind of discomfort on the part of the patients involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants nu(2) (nu(2){2} and nu(2){4}) for Au + Au and Cu + Cu collisions at center-of-mass energies root S-NN = 62.4 and 200 GeV. The difference between nu(2){2}(2) and nu(2){4}(2) is related to nu(2) fluctuations (sigma(nu 2)) and nonflow (delta(2)). We present an upper limit to sigma(nu 2)/nu 2. Following the assumption that eccentricity fluctuations sigma(epsilon) dominate nu(2) fluctuations nu(2)/sigma nu(2) approximate to epsilon/sigma epsilon we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with nu(2){2} and nu(2){4}. We also present results on the ratio of nu(2) to eccentricity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate how the initial geometry of a heavy-ion collision is transformed into final flow observables by solving event-by-event ideal hydrodynamics with realistic fluctuating initial conditions. We study quantitatively to what extent anisotropic flow (nu(n)) is determined by the initial eccentricity epsilon(n) for a set of realistic simulations, and we discuss which definition of epsilon(n) gives the best estimator of nu(n). We find that the common practice of using an r(2) weight in the definition of epsilon(n) in general results in a poorer predictor of nu(n) than when using r(n) weight, for n > 2. We similarly study the importance of additional properties of the initial state. For example, we show that in order to correctly predict nu(4) and nu(5) for noncentral collisions, one must take into account nonlinear terms proportional to epsilon(2)(2) and epsilon(2)epsilon(3), respectively. We find that it makes no difference whether one calculates the eccentricities over a range of rapidity or in a single slice at z = 0, nor is it important whether one uses an energy or entropy density weight. This knowledge will be important for making a more direct link between experimental observables and hydrodynamic initial conditions, the latter being poorly constrained at present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Rhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results Treatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis. Conclusions The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh2(H2cit)4 treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh2(H2cit)4 delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the problems in the analysis of nucleus-nucleus collisions is to get information on the value of the impact parameter b. This work consists in the application of pattern recognition techniques aimed at associating values of b to groups of events. To this end, a support vec- tor machine (SVM) classifier is adopted to analyze multifragmentation reactions. This method allows to backtracing the values of b through a particular multidimensional analysis. The SVM classification con- sists of two main phase. In the first one, known as training phase, the classifier learns to discriminate the events that are generated by two different model:Classical Molecular Dynamics (CMD) and Heavy- Ion Phase-Space Exploration (HIPSE) for the reaction: 58Ni +48 Ca at 25 AMeV. To check the classification of events in the second one, known as test phase, what has been learned is tested on new events generated by the same models. These new results have been com- pared to the ones obtained through others techniques of backtracing the impact parameter. Our tests show that, following this approach, the central collisions and peripheral collisions, for the CMD events, are always better classified with respect to the classification by the others techniques of backtracing. We have finally performed the SVM classification on the experimental data measured by NUCL-EX col- laboration with CHIMERA apparatus for the previous reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-relativistic heavy ions generate strong electromagnetic fields which offer the possibility to study γ-γ and γ-nucleus processes at the LHC in the so called ultra-peripheral collisions (UPC). The photoproduction of J/ψ vector mesons in UPC is sensitive to the gluon distribution of the interacting nuclei. In this thesis the study of coherent and incoherent J/ψ production in Pb-Pb collisions at √sNN = 2.76 TeV is described. The J/ψ has been measured via its leptonic decay in the rapidity range -0.9 < y < 0.9. The cross section for coherent and incoherent J/ψ are given. The results are compared to theoretical models for J/ψ production and the coherent cross section is found to be in good agreement with those models which include nuclear gluon shadowing consistent with EPS09 parametrization. In addition the cross section for the process γ γ→ e+e− has been measured and found to be in agreement with the STARLIGHT Monte Carlo predictions. The analysis has been published by the ALICE Collaboration in the European Physical Journal C, with one of its main plot depicted on the cover-front of the November 2013 issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are a family of plant toxic enzymes that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death involving different and still not completely understood pathways. The high cytotoxic activity showed by many RIPs makes them ideal candidates for the production of immunotoxins (ITs), chimeric proteins designed for the selective elimination of unwanted or malignant cells. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively employed to construct anticancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. Here we investigated the anticancer properties of two saporin-based ITs, anti-CD20 RTX/S6 and anti-CD22 OM124/S6, designed for the experimental treatment of B-cell NHLs. Both ITs showed high cytotoxicity towards CD20-positive B-cells, and their antitumor efficacy was enhanced synergistically by a combined treatment with proteasome inhibitors or fludarabine. Furthermore, the two ITs showed differencies in potency and ability to activate effector caspases, and a different behavior in the presence of the ROS scavenger catalase. Taken together, these results suggest that the different carriers employed to target saporin might influence saporin intracellular routing and saporin-induced cell death mechanisms. We also investigated the early cellular response to stenodactylin, a recently discovered highly toxic type 2 RIP representing an interesting candidate for the design and production of a new IT for the experimental treatment of cancer.