863 resultados para heat losses
Resumo:
Changes in texture, microstructure, colour and protein solubility of Thai indigenous and broiler chicken Pectoralis muscle stripes cooked at different temperatures were evaluated. The change in shear value of both chicken muscles was a significant increase from 50 to 80 degrees C but no change from 80 to 100 degrees C. A significant decrease in fibre diameter was obtained in samples heated to an internal temperature of 60 degrees C and the greatest shrinkage of sarcomeres was observed with internal temperatures of 70-100 and 80-100 C for broiler and indigenous chicken muscles, respectively (P < 0.05). Cooking losses of indigenous chicken muscles increased markedly in the temperature range 80-100 C and were significantly higher than those of the broiler (P < 0.001). With increasing temperature, from 50 to 70 degrees C, cooked chicken muscle became lighter and yellower. Relationships between changes in sarcomere length, fibre diameter, shear value, cooking loss and solubility of muscle proteins were evaluated. It was found that the solubility of muscle protein was very highly correlated with the texture of cooked broiler muscle while sarcomere length changes and collagen solubility were important factors influencing the cooking loss and texture of cooked indigenous chicken muscle. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
New crop cultivars will be required for a changing climate characterised by increased summer drought and heat stress in Europe. However, the uncertainty in climate predictions poses a challenge to crop scientists and breeders who have limited time and resources and must select the most appropriate traits for improvement. Modelling is a powerful tool to quantify future threats to crops and hence identify targets for improvement. We have used a wheat simulation model combined with local-scale climate scenarios to predict impacts of heat stress and drought on winter wheat in Europe. Despite the lower summer precipitation projected for 2050s across Europe, relative yield losses from drought is predicted to be smaller in the future, because wheat will mature earlier avoiding severe drought. By contrast, the risk of heat stress around flowering will increase, potentially resulting in substantial yield losses for heat sensitive cultivars commonly grown in northern Europe.
Resumo:
A sealed space between absorber and cover glass makes it possible reducing the influence of humidity condensate and dust at the same time as the enclosed space can be filled with a suitable gas for lowering the losses. This paper is about the size of the losses in these collectors. A calculating model of a gas-filled flat plate solar collector was built in Matlab with standard heat transfer formulas. It showed that the total loss can be reduced up to 20% when changing to an inert gas. It is also possible using a much shorter distance and still achieve low losses at the same time as the mechanical stresses in the material is reduce.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrochemical corrosion and passivation of Al-5Zn-1.7Mg-0.23Cu-0.053Nb alloys, submitted to different heat treatments (cold-rolled, annealed, quenched and aged, and quenched in two steps and aged), in sulphate-containing chloride solutions, has been studied by means of cyclic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The cyclic polarization curves showed that sulphate addition to the chloride solution produced a poor reproducible shift of the breakdown potential to more positive potentials. The repassivation potentials, much more reproducible, and practically separating the passive from the pitting potential region, were slightly displaced in the negative direction with that addition. When the alloys were potentiodynamically polarized in the passive potential region, sulphate was incorporated in the oxide film, thus precluding chloride ingress. In addition, Zn depletion was favoured, whereas Mg losses were avoided. Different equivalent circuits corresponding to different alloys and potentials in the passive and pitting regions were employed to account for the electrochemical processes taking place in each condition. This work shows that sulphate makes these alloys more sensitive to corrosion, increasing the fracture properties of the surface layer and favouring the pitting attack over greater areas than chloride alone. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.
Resumo:
Heat stress causes significant economic losses on broilers production due to poorer performance and carcass quality. Considering that protein has the highest heat increment among nutrients, it has been suggested that protein levels should be reduced in diets for heat-exposed broilers. Nevertheless, there are no conclusive results on the benefits of such practice, and further studies should be performed to elucidate some reported discrepancies. Thus, a trial was carried out to evaluate the effects of dietary protein levels (17, 20 and 23%) and environmental temperature (22 and 32°C) on the performance, nutrients digestibility, and energy and protein metabolism of broiler chickens from 21 to 42 days of age. Nutrients digestibility was determined by total excreta collection, and energy and protein metabolism was evaluated by comparative slaughter method. It was concluded that (1) heat exposure impairs broilers performance and increases nitrogen excretion, but do not change nutrients digestibility; (2) high-protein diets are technically feasible and promotes lower heat production for broilers reared under thermoneutral or hot environments, however, high-protein diets increases nitrogen excretion. © Asian Network for Scientific Information, 2007.
Resumo:
This paper presents the comparison of three topologies of multilevel inverters applied to drive an induction motor of 500 kVA/4.16 kV. The multilevel inverters analyzed are: a neutral point clamped inverter, a symmetrical cascaded multilevel inverter and a hybrid asymmetrical cascaded multilevel inverter. The performance indexes used in the comparison are total harmonic distortion, first order distortion factor, semiconductors power losses distribution and heat-sink volume. The comparison is developed with the purpose of finding the efficiency and the heat-sink volume where the three systems present the same output filter. ©2008 IEEE.
Resumo:
Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and yellowness diminished as ambient temperature increased, whereas cooking loss was linearly elevated with ambient temperature. Meat color traits revealed paler meat in the purebreds, but no differences in instrumental texture properties and water-holding capacity between genetic groups. Purebred rabbits were less susceptible to heat stress than the crossbreds. Heat stress resulted in lower slaughter and carcass weights and proportional reductions of organ weights, which contributed to a higher carcass yield. Moreover, it exerted a small, but negative, effect on meat quality traits. © 2012 The Animal Consortium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.
Resumo:
The weather on July 11 and 12, 1995 was a deadly combination of high temperature, high relative humidity, no cloud cover and no wind. The combination of heat and humidity has been matched only five times in Iowa’s 101 years of weather records. Estimated cattle death loss in a 13-county area of West Central Iowa was 3,750 head or 2.32% of the cattle on feed. A survey of 36 beef producers with 9,830 head of cattle on feed in 81 lots was summarized. Thirty-five lots with shade (24 square feet per head) reported an average death loss of .2% as compared to 46 lots without shade with losses of 4.8%. Producers reported a disproportionately higher death loss in dark-hided cattle. Non-shaded lots facing south, southwest, or west had higher death loss than lots facing east or southeast. Heavier animals were more susceptible to heat stress. Lots containing heifers that were fed MGA had lower death loss ( 3.8% vs. 6.2% ) as compared to lots with heifers but not receiving MGA.
Resumo:
The stationary upward propagation of a very lean methane/air flame in a long vertical tube open at the bottom and closed at the top is simulated numerically using a single overall chemical reaction to model combustion and assuming an optically thin gas and a transparent or non-reflecting tube wall to approximately account for radiation losses from CO2CO2 and H2OH2O. Buoyancy plays a dominant role in the propagation of these flames and causes a large region of low velocity of the burnt gas relative to the flame to appear below the flame front when the equivalence ratio is decreased. The size of this region scales with the radius of the tube, and its presence enhances the effect of radiation losses, which would be otherwise negligible for a standard flammability tube, given the small concentration of radiating species. Heat conduction is found to be important in the low velocity region and to lead to a conduction flux from the flame to the burnt gas that causes extinction at the flame tip for a value of the equivalence ratio near the flammability limit experimentally measured in the standard tube. The effect of radiation losses decreases with the radius of the tube. Numerical results and order-of-magnitude estimates show that, in the absence of radiation, a very lean flame front fails to propagate only after recirculation of the burnt gas extends to its reaction region and drastically changes its structure. This condition is not realized for the standard flammability tube, but it seems to account for the flammability limit measured in a tube of about half the radius of the standard tube.
Resumo:
Objective To investigate the extent of heat load problems, caused by the combination of excessive temperature and humidity, in Holstein-Friesian cows in Australia. Also, to outline how milk production losses and consequent costs from this can be estimated and minimised. Procedures Long-term meteorological data for Australia were analysed to determine the distribution of hot conditions over space and time. Fifteen dairy production regions were identified for higher-resolution data analysis. Both the raw meteorological data and their integration into a temperature-humidity thermal index were compiled onto a computer program. This mapping software displays the distribution of climatic patterns, both Australia-wide and within the selected dairying regions. Graphical displays of the variation in historical records for 200 locations in the 15 dairying regions are also available. As a separate study, production data from research stations, on-farm trials and milk factory records were statistically analysed and correlated with the climatic indices, to estimate production losses due to hot conditions. Results Both milk yields and milk constituents declined with increases in the temperature-humidity index. The onset and rate of this decline are dependent on a number of factors, including location, level of production, adaptation, and management regime. These results have been integrated into a farm-level economic analysis for managers of dairy properties. Conclusion By considering the historical patterns of hot conditions over time and space, along with expected production losses, managers of dairy farms can now conduct an economic evaluation of investment strategies to alleviate heat loads. These strategies include the provision of sprinklers, shade structures, or combinations of these.
Resumo:
The purpose of the work described here has been to seek methods of narrowing the present gap between currently realised heat pump performance and the theoretical limit. The single most important pre-requisite to this objective is the identification and quantitative assessment of the various non-idealities and degradative phenomena responsible for the present shortfall. The use of availability analysis has been introduced as a diagnostic tool, and applied to a few very simple, highly idealised Rankine cycle optimisation problems. From this work, it has been demonstrated that the scope for improvement through optimisation is small in comparison with the extensive potential for improvement by reducing the compressor's losses. A fully instrumented heat pump was assembled and extensively tested. This furnished performance data, and led to an improved understanding of the systems behaviour. From a very simple analysis of the resulting compressor performance data, confirmation of the compressor's low efficiency was obtained. In addition, in order to obtain experimental data concerning specific details of the heat pump's operation, several novel experiments were performed. The experimental work was concluded with a set of tests which attempted to obtain definitive performance data for a small set of discrete operating conditions. These tests included an investigation of the effect of two compressor modifications. The resulting performance data was analysed by a sophisticated calculation which used that measurements to quantify each dagradative phenomenon occurring in that compressor, and so indicate where the greatest potential for improvement lies. Finally, in the light of everything that was learnt, specific technical suggestions have been made, to reduce the losses associated with both the refrigerant circuit and the compressor.