991 resultados para hard tissue


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autogenous bone is still considered the gold standard, and the applicability of autogenous bone grafts is well established. However, the possibility of second harvesting from the same donor region remains unclear. The aim of this study was to perform a prospective evaluation of hard tissue deposition in the mandibular ramus after bone block harvesting using cone beam computed tomography (CBCT). Twenty-two patients with indications for augmentation procedures using autogenous bone from the mandibular ramus were selected. Three CBCT scans were performed with a tomographic guide before bone harvesting (T1) and at 14 days (T2) and 6 months (T3) after the surgical procedures. Measurements were obtained in 2D (area, mm(2)) and 3D (volume, mm(3)), and were subsequently compared. In the 2D analysis, the mean bone formation rate was 56%, while for the 3D analysis the mean rate was 9.7%. Despite this difference, there was a significant correlation between area and volume measurements. Our findings demonstrated the presence of hard tissue in the mandibular ramus at 6 months after bone harvesting, which suggests that it would be possible to reuse the same region for a second block harvesting. However, the second bone harvesting would involve less bone for transplantation when compared to the first bone harvesting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To compare with pristine sites bone resorption and soft tissue adaptation at implants placed immediately into extraction sockets (IPIES) in conjunction with deproteinized bovine bone mineral (DBBM) particles and a collagen membrane.Material and methods: The mesial root of the third premolar in the left side of the mandible was endodontically treated (Test). Flaps were elevated, the tooth hemi-sectioned, and the distal root removed to allow the immediate installation of an implant into the extraction socket in a lingual position. DBBM particles were placed into the defect and on the outer contour of the buccal bony ridge, concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. The premolar on the right side of the mandible was left in situ (control). Ground sections from the center of the implant as well as from the center of the distal root of the third premolar of the opposite side of the mandible were obtained. The histological image from the implant site was superimposed to that of the contralateral pristine distal alveolus, and dimensional variation evaluated for the hard tissue and the alveolar ridge.Results: After 3 months of healing, both histological and photographic evaluation revealed a reduction of hard and soft tissue dimensions.Conclusion: The contour augmentation performed with DBBM particles and a collagen membrane at the buccal aspects of implants placed IPIES was not able to maintain the tissue volume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To compare the hard tissue changes at implants installed applying edentulous ridge expansion (E.R.E.) at sites with a buccal bony wall thickness of 1 or 2 mm.Material and methods: In six Labrador dogs, the first and second maxillary incisors were extracted, and the buccal alveolar bony plates and septa were removed. After 3 months of healing, partial-thickness flaps were dissected, and the E.R.E. was applied bilaterally. Hence, an expansion of the buccal bony crest was obtained in both sides of the maxilla with a displacement of either a 1- or a 2-mm-wide buccal bony plate at the test and control sites, respectively. After 3 months of healing, biopsies were obtained for histological analyses.Results: A buccal vertical resorption of the alveolar crest of 2.3 +/- 0.8 and 2.1 +/- 1.1 mm, and a coronal level of osseointegration at the buccal aspect of 2.7 +/- 0.5 and 2.9 +/- 0.9 mm were found at the test (1 mm) and control (2 mm) sites, respectively. The differences did not reach statistical significance. The mean values of the mineralized bone-to-implant contact (MBIC%) ranged from 62% to 73% at the buccal and lingual sites. No statistically significant differences were found. Horizontal volume gains of 1.8 and 1.1 mm were observed at the test and control sites, respectively, and the difference being statistically significant.Conclusions: Implants installed using the E.R.E. technique yielded a high degree of osseointegration. It is suggested that the displacement of buccal bony plates of 1 mm thickness is preferable compared with that of wider dimensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: The purpose of this in vivo study was to compare the effectiveness of a new light cured resin based dicalcium/tricalcium silicate pulp capping material (TheraCal LC, Bisco), pure Portland cement, resin based calcium hydroxide or glass ionomer in the healing of bacterially contaminated primate pulps. Study design: The experiment required four primates each having 12 teeth prepared with buccal penetrations into the pulpal tissues with an exposure of approximately 1.0 mm. The exposed pulps of the primate teeth were covered with cotton pellets soaked in a bacterial mixture consisting of microorganisms normally found in human pulpal abscesses. After removal of the pellet, hemostasis was obtained and the pulp capping agents applied. The light cured resin based pulp capping material (TheraCal LC) was applied to the pulpal tissue of twelve teeth with a needle tip syringe and light cured for 15 seconds. Pure Portland cement mixed with a 2% Chlorhexidine solution was placed on the exposed pulpal tissues of another twelve teeth. Twelve additional teeth had a base of GIC applied (Triage, Fuji VII GC America) and another twelve had a pulp cap with VLC DYCAL (Dentsply), a light cured calcium hydroxide resin based material. The pulp capping bases were then covered with a RMGI (Fuji II LC GC America). The tissue samples were collected at 4 weeks. The samples were deminerilized, sectioned, stained and histologically graded. Results: There were no statistically significant differences between the groups in regard to pulpal inflammation (H= 0.679, P=1.00). However, both the Portland cement and light cured TheraCal LC groups had significantly more frequent hard tissue bridge formation at 28 days than the GIC and VLC Dycal groups (H= 11.989, P=0.009). The measured thickness of the hard tissue bridges with the pure Portland and light cured TheraCal LC groups were statistically greater than that of the other two groups (H= 15.849, P=0.002). In addition, the occurrence of pulpal necrosis was greater with the GIC group than the others. Four premolars, one each treated according to the protocols were analyzed with a microCT machine. The premolar treated with the light cured TheraCal LC demonstrated a complete hard tissue bridge. The premolar treated with the GIC did not show a complete hard tissue bridge while the premolar treated with VLC Dycal had an incomplete bridge. The pure Portland with Chlorhexidine mixture created extensive hard tissue bridging.Conclusion: TheraCal LC applied to primate pulps created dentin bridges and mild inflammation acceptable for pulp capping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To evaluate the anti-erosive potential of solutions containing sodium fluoride (NaF, 225 ppm F) and different film-forming agents.Methods: In Phase 1, hydroxyapatite crystals were pre-treated with solutions containing NaF (F), linear sodium polyphosphate (LPP), sodium pyrophosphate tetrabasic (PP), sodium tripolyphosphate (STP), sodium caseinate (SC), bovine serum albumin (BSA), stannous chloride (Sn) and some combinations thereof. Deionized water was the control (C). The pH-stat method was used to evaluate hydroxyapatite dissolution. In Phase 2, the most effective solutions were tested in two independent experiments. Both consisted of an erosion-remineralization cycling model using enamel and dentine specimens with three solution treatments per day. In Phase 2a, the challenge was performed with 0.3% citric acid (pH = 3.8). In Phase 2b, 1% citric acid (pH = 2.4) was used. Hard tissue surface loss was determined profilometrically. Data were analyzed with two-way ANOVA and Tukey tests.Results: In Phase 1, F, LPP, Sn and some of their combinations caused the greatest reduction in hydroxyapatite dissolution. In Phase 2a, C showed the highest enamel loss, followed by LPP. There were no differences between all other groups. In Phase 2b: (F + LPP + Sn) < (F + LPP) = (F + Sn) < (F) = (LPP + Sn) < (LPP) < (Sn) < C. For dentine, in both experiments, only the fluoride-containing groups showed lower surface loss than C, except for LPP + Sn in 2a.Conclusions: F, Sn, LPP reduced enamel erosion, this effect was enhanced by their combination under highly erosive conditions. For dentine, the F-containing groups showed similar protective effect.Clinical significance: The addition of LPP and/or Sn can improve the fluoride solution protection against erosion of enamel but not of dentine. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ObjectiveTo compare peri-implant tissue healing at implants installed in sites prepared with conventional drills or a sonic device.Material and methodsIn six Beagle dogs, the mandibular premolars and first molars were extracted bilaterally. After 3 months, full-thickness muco-periosteal flaps were elevated and recipient sites were prepared in both sides of the mandible. In the right side (control), the osteotomies were prepared using conventional drills, while, at the left side (test), a sonic device (Sonosurgery((R))) was used. Two implants were installed in each side of the mandible. After 8weeks of non-submerged healing, biopsies were harvested and ground sections prepared for histological evaluation.ResultsThe time consumed for the osteotomies at the test was more than double compared to the conventional control sites. No statistically significant differences were found for any of the histological variables evaluated for hard and soft tissue dimensions. Although not statistically significant, slightly higher mineralized bone-to-implant contact was found at the test (65.4%) compared to the control (58.1) sites.ConclusionsSimilar healing characteristics in osseointegration and marginal hard tissue remodeling resulted at implants installed into osteotomies prepared with conventional drills or with the sonic instrument (Sonosurgery((R))).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To compare peri-implant soft- and hard-tissue integration at implants installed juxta- or sub-crestally. Furthermore, differences in the hard and soft peri-implant tissue dimensions at sites prepared with drills or sonic instruments were to be evaluated. Three months after tooth extraction in six dogs, recipient sites were prepared in both sides of the mandible using conventional drills or a sonic device (Sonosurgery(®) ). Two implants with a 1.7-mm high-polished neck were installed, one with the rough/smooth surface interface placed at the level of the buccal bony crest (control) and the second placed 1.3 mm deeper (test). After 8 weeks of non-submerged healing, biopsies were harvested and ground sections prepared for histological evaluation. The buccal distances between the abutment/fixture junction (AF) and the most coronal level of osseointegration (B) were 1.6 ± 0.6 and 2.4 ± 0.4 mm; between AF and the top of the bony crest (C), they were 1.4 ± 0.4 and 2.2 ± 0.2 mm at the test and control sites, respectively. The top of the peri-implant mucosa (PM) was located more coronally at the test (1.2 ± 0.6 mm) compared to the control sites (0.6 ± 0.5 mm). However, when the original position of the bony crest was taken into account, a higher bone loss and a more apical position of the peri-implant mucosa resulted at the test sites. The placement of implants into a sub-crestal location resulted in a higher vertical buccal bone resorption and a more apical position of the peri-implant mucosa in relation to the level of the bony crest at implant installation. Moreover, peri-implant hard-tissue dimensions were similar at sites prepared with either drills or Sonosurgery(®) .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate the peri-implant soft and hard tissue adaptation at implants with different modified surfaces and configurations. Six Beagle dogs were used. Mandibular premolars and first molars were extracted bilaterally. After 3 months, full-thickness flaps were elevated, and two different types of trans-mucosal implants (ICX-Gold®, Medentis Medical GmbH, Dernau, Germany and SLActive®, Institute Straumann, Bern, Switzerland) and two different surfaces were randomly installed in the distal regions of one side of the mandible. Abutments were applied, and a nonsubmerged healing was allowed. After 1 month, the procedures were performed in the other side of the mandible, and after a further month, the animals were sacrificed, biopsies were collected, and ground sections prepared for histological examination. Similar results in marginal bone and soft tissues dimensions were observed after 1 month of healing at the two implant systems used, and no major changes could be observed after 2 months of healing. After 1 month, the percentage of new bone was 69.0% and 68.8% at ICX-Gold and SLActive surfaces, respectively. After 2 months, the percentage of new bone was 67.8% and 71.9% at ICX-Gold Medentis and SLActive surfaces, respectively. No statistically significant differences in osseointegration were found. The two implant systems used resulted in similar osseointegration after 1 and 2 months of healing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concepts of buccal health promotion and the increase of life expectancy have contributed for the highest maintenance of dental elements. Thus, with the new alimentary and behavioral habits the irreversible loss of dental hard tissue of non-carious origin has increased substantially, being divided in attrition, erosion and abrasion. The dental erosion is a chronic pathology defined as the superficial loss of dental hard tissue as a result of a chemical process not involving bacteria caused by acid that could be intrinsic, extrinsic or unknown etiology, causing irreversible loss of mineral tissue and dentinal hypersensitivity. The aim of this paper is to present a review of literature on the main factors that can cause the injuries of erosion, including the different aspects related to its etiology, classification, diagnosis, prevention and treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: to the purpose of this study was to compare the stress distribution in the peri-implant hard tissue on different attachment systems for mandibular or maxillary implant-retained overdentures. Material and methods: the search for published studies was performed on PubMed/Medline database covering the period of January 2000 to April 2014. The selection of the eligible studies was performed according to including and excluding criteria. Results: a total of 140 studies were screened and according to the search strategy, 21 studies were selected for this review. Eight studies perfomed strain-gauge analysis, 5 evaluated the stress distribution though photoelastic test and 7 performed tridimensional finite element analysis. Only one study in vivo was included. Non-splinted O-rings showed better stress distribution than other bar-clip attachment systems. Conclusions: the present study did not find sufficient evidences regarding the most indicated attachment system for overdentures with better stress distribution for the peri-implant hard tissue. The methodologies analyzed should be complemented with other tests and used as a tool for further clinical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent–dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24 h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.