890 resultados para gut microbiota


Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. METHODS AND RESULTS: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. CONCLUSION: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent molecular-based investigations have confirmed the species diversity and metabolic complexity of the human gut microbiota. It is also increasingly clear that the human gut microbiota plays a crucial role in host health, both as a source of infection and environmental insult and, conversely, in protection against disease and maintenance of gut function. Although little is known about the health impact of the dominant groups of gut bacteria it is generally accepted that bifidobacteria and lactobacilli are important components of what might be termed the beneficial gut microbiota. The microbiota management tools of probiotics, prebiotics and synbiotics have been developed and, indeed, commercialized over the past few decades with the expressed purpose of increasing numbers of bifidobacteria and/or lactobacilli within the gastrointestinal tract.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synbiotics are recognized means of modulating gut microbiota composition and activities. However, whether synbiotics are superior to prebiotics and probiotics alone in moderating the gut microbiota towards a purportedly healthy composition has not been determined. Eight selected synbiotics (short-chain fructooligosaccharides or fructooligosaccharides, each combined with one of four probiotics, Lactobacillus fermentum ME-3, Lactobacillus plantarum WCFS1, Lactobacillus paracasei 8700:2 or Bifidobacterium longum 46) were added to 24-h pH-controlled anaerobic faecal batch cultures. The prebiotic and probiotic components were also tested alone to determine their respective role within the synbiotic for modulation of the faecal microbiota. Effects upon major groups of the microbiota were evaluated using FISH. Rifampicin variant probiotic strains were used to assess probiotic levels. Synbiotic and prebiotics increased bifidobacteria and the Eubacterium rectale-Clostridium coccoides group. Lower levels of Escherichia coli were retrieved with these combinations after 5 and 10 h of fermentation. Probiotics alone had little effect upon the groups, however. Multivariate analysis revealed that the effect of synbiotics differed from the prebiotics as higher levels of Lactobacillus-Enterococcus were observed when the probiotic was stimulated by the prebiotic component. Here, the synbiotic approach was more effective than prebiotic or probiotic alone to modulate the gut microbiota.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. Methods and Results: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. Conclusion: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. Significance and Impact of the Study: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent large-scale cloning studies have shown that the ratio of Bacteroidetes to Firmicutes may be important in the obesity-associated gut microbiota, but the species these phyla represent in this ecosystem has not been examined. The Bacteroidetes data from the recent Turnbaugh study were examined to determine those members of the phylum detected in human faecal samples. In addition, FISH analysis was performed on faecal samples from 17 healthy, nonobese donors using probe Bac303, routinely used by gut microbiologists to enumerate BacteroidesPrevotella populations in faecal samples, and another probe (CFB286) whose target range has some overlap with that of Bac303. Sequence analysis of the Turnbaugh data showed that 23/519 clones were chimeras or erroneous sequences; all good sequences were related to species of the order Bacteroidales, but no one species was present in all donors. FISH analysis demonstrated that approximately one-quarter of the healthy, nonobese donors harboured high numbers of Bacteroidales not detected by probe Bac303. It is clear that Bacteroidales populations in human faecal samples have been underestimated in FISH-based studies. New probes and complementary primer sets should be designed to examine numerical and compositional changes in the Bacteroidales during dietary interventions and in studies of the obesity-associated microbiota in humans and animal model systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional foods is an often-used term applied to dietary ingredients that serve to improve consumer health. Over the last few decades, these foods have gained in popularity with sales continuing to increase rapidly. Recent scientific, and some lay, reports have shown the popularity of both probiotics and prebiotics. These serve to elicit changes in the gut microbiota composition that increase populations of purported beneficial gut bacterial genera, for example, lactobacilli or bifidobacteria. Probiotics use live microbial feed additions, whereas prebiotics target indigenous flora components. As gastrointestinal disorders are prevalent in terms of human health, both probiotics and prebiotics serve an important role in the prophylactic management of various acute and chronic gut derived conditions. Examples include protection from gastroenteritis and some inflammatory conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis Recent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes. Methods Since bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]). Results Compared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines). Conclusions/interpretation Together, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rifaximin, a rifamycin derivative, has been reported to induce clinical remission of active Crohn's disease (CD), a chronic inflammatory bowel disorder. In order to understand how rifaximin affects the colonic microbiota and its metabolism, an in vitro human colonic model system was used in this study. We investigated the impact of the administration of 1800 mg/day of rifaximin on the faecal microbiota of four patients affected by colonic active CD [Crohn's disease activity index (CDAI > 200)] using a continuous culture colonic model system. We studied the effect of rifaximin on the human gut microbiota using fluorescence in situ hybridization, quantitative PCR and PCR–denaturing gradient gel electrophoresis. Furthermore, we investigated the effect of the antibiotic on microbial metabolic profiles, using 1H-NMR and solid phase microextraction coupled with gas chromatography/mass spectrometry, and its potential genotoxicity and cytotoxicity, using Comet and growth curve assays. Rifaximin did not affect the overall composition of the gut microbiota, whereas it caused an increase in concentration of Bifidobacterium, Atopobium and Faecalibacterium prausnitzii. A shift in microbial metabolism was observed, as shown by increases in short-chain fatty acids, propanol, decanol, nonanone and aromatic organic compounds, and decreases in ethanol, methanol and glutamate. No genotoxicity or cytotoxicity was attributed to rifaximin, and conversely rifaximin was shown to have a chemopreventive role by protecting against hydrogen peroxide-induced DNA damage. We demonstrated that rifaximin, while not altering the overall structure of the human colonic microbiota, increased bifidobacteria and led to variation of metabolic profiles associated with potential beneficial effects on the host.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The prebiotic potential of a konjac glucomannan hydrolysate (GMH) was investigated in vitro using batch cultures inoculated with human faeces. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation (FISH), and short chain fatty acid (SCFA) production was monitored by gas chromatography. The populations of Bifidobacterium genus, Lactobacillus–Enterococcus group and the Atopobium group all significantly increased after GMH and inulin fermentation. The Bacteroides–Prevotella group had a lower end population after GMH fermentation while inulin gave an increase, although these differences were not significant. No significant differences in SCFA concentrations were observed between inulin and GMH. As with inulin, GMH produced selective stimulation of beneficial gut microbiota and a favourable SCFA profile. In order to confirm a beneficial effect of GMH further in vivo studies involving healthy human volunteers should be considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through modulation of faecal microbiota, fermentation characteristics and faecal water genotoxicity. A total of thirty-seven volunteers completed this randomised, double-blind, placebo-controlled crossover trial. The treatments – juice containing 4 g GOS and placebo – were consumed twice daily for 3 weeks, preceded by 3-week washout periods. To study the effect of GOS on different large bowel regions, three-stage continuous culture systems were conducted in parallel using faecal inocula from three volunteers. Faecal samples were microbially enumerated by quantitative PCR. In vivo, following GOS intervention, bifidobacteria were significantly more compared to post-placebo (P = 0·02). Accordingly, GOS supplementation had a bifidogenic effect in all in vitro system vessels. Furthermore, in vessel 1 (similar to the proximal colon), GOS fermentation led to more lactobacilli and increased butyrate. No changes in faecal water genotoxicity were observed. To conclude, GOS supplementation significantly increased bifidobacteria numbers in vivo and in vitro. Increased butyrate production and elevated bifidobacteria numbers may constitute beneficial modulation of the gut microbiota in a maturing population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.