989 resultados para growth promoters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO 2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1-P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures. © 2011 Delivopoulos, Murray.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly upregulated during recovery from growth-arrested states. This expression pattern is anticorrelated to nonoperon genes, consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. We provide evidence that operons become advantageous because, by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1a,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1a,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1a,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1a,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant activation of Wnt/β-catenin signaling, resulting in the expression of Wnt-regulated oncogenes, is recognized as a critical factor in the etiology of colorectal cancer. Occupancy of β-catenin at promoters of Wnt target genes drives transcription, but the mechanism of β-catenin action remains poorly understood. Here, we show that CARM1 (coactivator-associated arginine methyltransferase 1) interacts with β-catenin and positively modulates β-catenin-mediated gene expression. In colorectal cancer cells with constitutively high Wnt/β-catenin activity, depletion of CARM1 inhibits expression of endogenous Wnt/β-catenin target genes and suppresses clonal survival and anchorage-independent growth. We also identified a colorectal cancer cell line (RKO) with a low basal level of β-catenin, which is dramatically elevated by treatment with Wnt3a. Wnt3a also increased the expression of a subset of endogenous Wnt target genes, and CARM1 was required for the Wnt-induced expression of these target genes and the accompanying dimethylation of arginine 17 of histone H3. Depletion of β-catenin from RKO cells diminished the Wnt-induced occupancy of CARM1 on a Wnt target gene, indicating that CARM1 is recruited to Wnt target genes through its interaction with β-catenin and contributes to transcriptional activation by mediating events (including histone H3 methylation) that are downstream from the actions of β-catenin. Therefore, CARM1 is an important positive modulator of Wnt/β-catenin transcription and neoplastic transformation, and may thereby represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/β-catenin signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1–P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the beta-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the role of the c-KIT receptor in the progression of human melanoma and the mechanism(s) for the regulation of c-KIT gene expression in human melanoma.^ The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP) (metastatic phenotype) are not well-defined. Expression of the tyrosine-kinase receptor c-KIT progressively decreases during local tumor growth and invasion of human melanomas. To provide direct evidence that the metastasis of human melanoma is associated with the loss of c-KIT expression, highly metastatic A375SM cells, which express very low or undetectable levels of c-KIT, were tranduced with the human c-KIT gene. We demonstrated that enforced c-KIT expression in highly metastatic human melanoma cells significantly suppressed their tumorigenicity and metastatic propensity in nude mice. In addition, we showed that the ligand for c-KIT, SCF, induces apoptosis in human melanoma cells expressing c-KIT under both in vitro and in vivo conditions. These results suggest that loss of c-KIT receptor may allow malignant melanoma cells to escape SCF/c-KIT-mediated apoptosis, thus contributing to tumor growth and eventually metastasis.^ Furthermore, we investigated the possible mechanism(s) for the down-regulation of c-KIT gene expression in malignant melanoma. Sequence analysis of the c-KIT promoter indicated that this promoter contains several consensus binding-site sequences including three putative AP2 and two Myb sites. Although Myb was shown to be associated with c-KIT expression in human hemotopoietic cells, we found no correlation between c-KIT expression and Myb expression in human melanoma cell lines. In contrast, we showed that c-KIT expression directly correlates with expression of AP2 in human melanoma cells. We found that highly metastatic cells do not express the transcription factor AP2. Expression of AP2 in A375SM cells (c-KIT-negative and AP2-negative) was enough to restore luciferase activity driven by the c-KIT promoter in a dose-dependent manner. On the other hand, co-expression of the dominant-negative form of AP2 (AP2B) in Mel-501 cells (c-KIT-positive and AP2-positive) resulted in two-fold reduction in luciferase activity. Electrophoretic mobility shift assays revealed that the c-KIT promoter contains functional AP2 binding sites which could associate with AP2 protein. Endogenous c-KIT gene expression levels were elevated in AP2 stably-transfected human melanoma A375SM cells. Expression of exogenous AP2 in A375SM cells inhibited their tumorigenicity and metastatic potential in nude mice. The c-KIT ligand, SCF, also induced apoptosis in the AP2 stably-transfected A375SM cells. The identification of AP2 as an important regulator for c-KIT expression suggests that AP2 may have tumor growth and metastasis inhibitory properties, possibly mediated through c-KIT/SCF effects on apoptosis of human melanoma cells. Since AP2 binding sites were found in the promoters of other genes involved in the progression of human melanoma, such as MMP2 (72 kDa collagenase), MCAM/MUC18 and P21/WAF-1, our findings suggest that loss of AP2 expression might be a crucial event in the development of malignant melanoma. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The twin-domain model [Liu, L. F. & Wang, J. C. (1987) Proc. Natl. Acad. Sci. USA 84, 7024–7027] suggests that closely spaced, divergent, superhelically sensitive promoters can affect the transcriptional activity of one another by transcriptionally induced negative DNA supercoiling generated in the divergent promoter region. This gene arrangement is observed for many LysR-type-regulated operons in bacteria. We have examined the effects of divergent transcription in the prototypic LysR-type system, the ilvYC operon of Escherichia coli. Double-reporter constructs with the lacZ gene under transcriptional control of the ilvC promoter and the galK gene under control of the divergent ilvY promoter were used to demonstrate that a down-promoter mutation in the ilvY promoter severely decreases in vivo transcription from the ilvC promoter. However, a down-promoter mutation in the ilvC promoter only slightly affects transcription from the ilvY promoter. In vitro transcription assays with DNA topoisomers showed that transcription from the ilvC promoter increases over the entire range of physiological superhelical densities, whereas transcription initiation from the ilvY promoter exhibits a broad optimum at a midphysiological superhelical density. Evidence that this promoter coupling is DNA supercoiling-dependent is provided by the observation that a novobiocin-induced decrease in global negative superhelicity results in an increase in ilvY promoter activity and a decrease in ilvC promoter activity predicted by the in vitro data. We suggest that this transcriptional coupling is important for coordinating basal level expression of the ilvYC operon with the nutritional and environmental conditions of cell growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human type VII collagen gene (COL7A1) recently has been identified as an immediate-early response gene for transforming growth factor β (TGF-β)/SMAD signaling pathway. In this study, by using MDA-MB-468 SMAD4−/− breast carcinoma cells, we demonstrate that expression of SMAD4 is an absolute requirement for SMAD-mediated promoter activity. We also demonstrate that the SMAD binding sequence (SBS) representing the TGF-β response element in the region −496/−444 of the COL7A1 promoter functions as an enhancer in the context of a heterologous promoter. Electrophoretic mobility-shift assays with nuclear extracts from COS-1 cells transfected with expression vectors for SMADs 1–5 indicate that SMAD3 forms a complex with a migration similar to that of the endogenous TGF-β-specific complex observed in fibroblast extracts. Electrophoretic mobility-shift assays using recombinant glutathione S-transferase-SMAD fusion proteins indicate that both SMAD4 and C-terminally truncated SMAD3, but not SMAD2, can bind the COL7A1 SBS. Coexpression of SMAD3 and SMAD4 in COS-1 cells leads to the formation of two complexes: a DNA/protein complex containing SMAD3 alone and another slower-migrating complex containing both SMAD3 and SMAD4, the latter complex not being detected in fibroblasts. Maximal transactivation of COL7A1 SBS-driven promoters in either MDA-MB-468 carcinoma cells or fibroblasts requires concomitant overexpression of SMAD3 and SMAD4. These data may represent the first identification of a functional homomeric SMAD3 complex regulating a human gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) causes growth arrest in most cell types. TGF-β induces hypophosphorylation of retinoblastoma susceptibility gene 1 product (RB), which sequesters E2F factors needed for progression into S phase of the cell cycle, thereby leading to cell cycle arrest at G1. It is possible, however, that the E2F-RB complex induced by TGF-β may bind to E2F sites and suppress expression of specific genes whose promoters contain E2F binding sites. We show here that TGF-β treatment of HaCaT cells induced the formation of E2F4-RB and E2F4-p107 complexes, which are capable of binding to E2F sites. Disruption of their binding to DNA with mutation in the E2F sites did not change the expression from promoters of E2F1, B-myb, or HsORC1 genes in cycling HaCaT cells. However, the same mutation stimulated 5- to 6-fold higher expression from all three promoters in cells treated with TGF-β. These results suggest that E2F binding sites play an essential role in the transcription repression of these genes under TGF-β treatment. Consistent with their repression of TGF-β-induced gene expression, introduction of E2F sites into the promoter of cyclin-dependent kinase inhibitor p15INK4B gene effectively inhibited its induction by TGF-β. Experiments utilizing Gal4-RB and Gal4-p107 chimeric constructs demonstrated that either RB or p107 could directly repress TGF-β induction of p15INK4B gene when tethered to p15INK4B promoter through Gal4 DNA binding sites. Therefore, E2F functions to bring RB and p107 to E2F sites and represses gene expression by TGF-β. These results define a specific function for E2F4-RB and E2F4-p107 complexes in gene repression under TGF-β treatment, which may constitute an integral part of the TGF-β-induced growth arrest program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We constructed a dual regulated expression vector cassette (pDuoRex) whereby two heterologous genes can be independently regulated via streptogramin- and tetracycline-responsive promoters. Two different constructs containing growth-promoting and growth-inhibiting genes were stably transfected in recombinant Chinese hamster ovary (CHO) cells that express the streptogramin- and tetracycline-dependent transactivators in a dicistronic configuration. An optimally balanced heterologous growth control scenario was achieved by reciprocal expression of the growth-inhibiting human cyclin-dependent kinase inhibitor p27Kip1 in sense (p27Kip1S) and antisense (p27Kip1AS) orientation. Exclusive expression of p27Kip1S resulted in complete G1-phase-specific growth arrest, while expression of only p27Kip1AS showed significantly increased proliferation compared to control cultures (both antibiotics present), presumably by decreasing host cell p27Kip1 expression. In a second system, a derivative of pDuoRex encoding streptogramin-responsive expression of the growth-promoting SV40 small T antigen (sT) and tetracycline-regulated expression of p27Kip1 was stably transfected into CHO cells. Expression of sT alone resulted in an increase in cell proliferation, but the expression of p27Kip1 failed to provide the expected G1-specific growth arrest despite having demonstrated expression of the protein. This illustrates the difficulty in balancing the complex pathways underlying cell proliferation control through the expression of two functionally distinct genes involved in those pathways, and how a single-gene sense/antisense approach using pDuoRex can overcome this barrier to complete metabolic engineering control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five candidate promoters were examined to determine their utility in directing immunogenic levels of expression of the C fragment from tetanus toxin in attenuated S. enterica used as an oral vaccine in mice. Promoters derived from the genes encoding the stringent starvation protein (sspA) from E. coli and S. enterica, but not ansB derived promoters, expressed immunogenic levels of C fragment from multi-copy plasmids in attenuated S. enterica in vivo and, following oral immunization, induced high titre specific anti-tetanus toxoid serum antibodies. We also demonstrate that not only the choice of promoter, replicon and growth conditions but also how expression constructs are assembled in the chosen plasmid is critical for the successful development of plasmid-based antigen delivery systems using attenuated S. enterica. In addition, the S. enterica sspA promoter is able to elicit anti-tetanus toxoid antibodies in mice when the psspA-tetC expression cassette is integrated in single copy on the S. enterica chromosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)