913 resultados para grouping estimators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ziel der Arbeit ist die Analyse von Prinzipien der Konturintegration im menschlichen visuellen System. Die perzeptuelle Verbindung benachbarter Teile in einer visuellen Szene zu einem Ganzen wird durch zwei gestalttheoretisch begründete Propositionen gekennzeichnet, die komplementäre lokale Mechanismen der Konturintegration beschreiben. Das erste Prinzip der Konturintegration fordert, dass lokale Ähnlichkeit von Elementen in einem anderen Merkmal als Orientierung nicht hinreicht für die Entdeckung von Konturen, sondern ein zusätzlicher statistischer Merkmalsunterschied von Konturelementen und Umgebung vorliegen muss, um Konturentdeckung zu ermöglichen. Das zweite Prinzip der Konturintegration behauptet, dass eine kollineare Ausrichtung von Konturelementen für Konturintegration hinreicht, und es bei deren Vorliegen zu robuster Konturintegrationsleistung kommt, auch wenn die lokalen merkmalstragenden Elemente in anderen Merkmalen in hohem Maße zufällig variieren und damit keine nachbarschaftliche Ähnlichkeitsbeziehung entlang der Kontur aufweisen. Als empirische Grundlage für die beiden vorgeschlagenen Prinzipien der Konturintegration werden drei Experimente berichtet, die zunächst die untergeordnete Rolle globaler Konturmerkmale wie Geschlossenheit bei der Konturentdeckung aufweisen und daraufhin die Bedeutung lokaler Mechanismen für die Konturintegration anhand der Merkmale Kollinearität, Ortsfrequenz sowie der spezifischen Art der Interaktion zwischen beiden Merkmalen beleuchten. Im ersten Experiment wird das globale Merkmal der Geschlossenheit untersucht und gezeigt, dass geschlossene Konturen nicht effektiver entdeckt werden als offene Konturen. Das zweite Experiment zeigt die Robustheit von über Kollinearität definierten Konturen über die zufällige Variation im Merkmal Ortsfrequenz entlang der Kontur und im Hintergrund, sowie die Unmöglichkeit der Konturintegration bei nachbarschaftlicher Ähnlichkeit der Konturelemente, wenn Ähnlichkeit statt über kollineare Orientierung über gleiche Ortsfrequenzen realisiert ist. Im dritten Experiment wird gezeigt, dass eine redundante Kombination von kollinearer Orientierung mit einem statistischen Unterschied im Merkmal Ortsfrequenz zu erheblichen Sichtbarkeitsgewinnen bei der Konturentdeckung führt. Aufgrund der Stärke der Summationswirkung wird vorgeschlagen, dass durch die Kombination mehrerer Hinweisreize neue kortikale Mechanismen angesprochen werden, die die Konturentdeckung unterstützen. Die Resultate der drei Experimente werden in den Kontext aktueller Forschung zur Objektwahrnehmung gestellt und ihre Bedeutung für die postulierten allgemeinen Prinzipien visueller Gruppierung in der Konturintegration diskutiert. Anhand phänomenologischer Beispiele mit anderen Merkmalen als Orientierung und Ortsfrequenz wird gezeigt, dass die gefundenen Prinzipien Generalisierbarkeit für die Verarbeitung von Konturen im visuellen System beanspruchen können.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro è motivato dal problema della constituzione di unità percettive a livello della corteccia visiva primaria V1. Si studia dettagliatamente il modello geometrico di Citti-Sarti con particolare attenzione alla modellazione di fenomeni di associazione visiva. Viene studiato nel dettaglio un modello di connettività. Il contributo originale risiede nell'adattamento del metodo delle diffusion maps, recentemente introdotto da Coifman e Lafon, alla geometria subriemanniana della corteccia visiva. Vengono utilizzati strumenti di teoria del potenziale, teoria spettrale, analisi armonica in gruppi di Lie per l'approssimazione delle autofunzioni dell'operatore del calore sul gruppo dei moti rigidi del piano. Le autofunzioni sono utilizzate per l'estrazione di unità percettive nello stimolo visivo. Sono presentate prove sperimentali e originali delle capacità performanti del metodo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 10 years the number of mobile devices has grown rapidly. Each person usually brings at least two personal devices and researchers says that in a near future this number could raise up to ten devices per person. Moreover, all the devices are becoming more integrated to our life than in the past, therefore the amount of data exchanged increases accordingly to the improvement of people's lifestyle. This is what researchers call Internet of Things. Thus, in the future there will be more than 60 billions of nodes and the current infrastructure is not ready to keep track of all the exchanges of data between them. Therefore, infrastructure improvements have been proposed in the last years, like MobileIP and HIP in order to facilitate the exchange of packets in mobility, however none of them have been optimized for the purpose. In the last years, researchers from Mid Sweden University created The MediaSense Framework. Initially, this framework was based on the Chord protocol in order to route packets in a big network, but the most important change has been the introduction of PGrids in order to create the Overlay and the persistence. Thanks to this technology, a lookup in the trie takes up to 0.5*log(N), where N is the total number of nodes in the network. This result could be improved by further optimizations on the management of the nodes, for example by the dynamic creation of groups of nodes. Moreover, since the nodes move, an underlaying support for connectivity management is needed. SCTP has been selected as one of the most promising upcoming standards for simultaneous multiple connection's management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, regression models are used when residuals are spatially correlated. Prominent examples include studies in environmental epidemiology to understand the chronic health effects of pollutants. I consider the effects of residual spatial structure on the bias and precision of regression coefficients, developing a simple framework in which to understand the key issues and derive informative analytic results. When the spatial residual is induced by an unmeasured confounder, regression models with spatial random effects and closely-related models such as kriging and penalized splines are biased, even when the residual variance components are known. Analytic and simulation results show how the bias depends on the spatial scales of the covariate and the residual; bias is reduced only when there is variation in the covariate at a scale smaller than the scale of the unmeasured confounding. I also discuss how the scales of the residual and the covariate affect efficiency and uncertainty estimation when the residuals can be considered independent of the covariate. In an application on the association between black carbon particulate matter air pollution and birth weight, controlling for large-scale spatial variation appears to reduce bias from unmeasured confounders, while increasing uncertainty in the estimated pollution effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In environmental epidemiology, exposure X and health outcome Y vary in space and time. We present a method to diagnose the possible influence of unmeasured confounders U on the estimated effect of X on Y and to propose several approaches to robust estimation. The idea is to use space and time as proxy measures for the unmeasured factors U. We start with the time series case where X and Y are continuous variables at equally-spaced times and assume a linear model. We define matching estimator b(u)s that correspond to pairs of observations with specific lag u. Controlling for a smooth function of time, St, using a kernel estimator is roughly equivalent to estimating the association with a linear combination of the b(u)s with weights that involve two components: the assumptions about the smoothness of St and the normalized variogram of the X process. When an unmeasured confounder U exists, but the model otherwise correctly controls for measured confounders, the excess variation in b(u)s is evidence of confounding by U. We use the plot of b(u)s versus lag u, lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on Y. We use appropriate linear combination of b(u)s or extrapolate to b(0) to obtain novel estimators that are more robust to the influence of smooth U. The methods are extended to time series log-linear models and to spatial analyses. The LEP plot gives us a direct view of the magnitude of the estimators for each lag u and provides evidence when models did not adequately describe the data.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes computing sensitivities of upper tail probabilities of random sums by the saddlepoint approximation. The considered sensitivity is the derivative of the upper tail probability with respect to the parameter of the summation index distribution. Random sums with Poisson or Geometric distributed summation indices and Gamma or Weibull distributed summands are considered. The score method with importance sampling is considered as an alternative approximation. Numerical studies show that the saddlepoint approximation and the method of score with importance sampling are very accurate. But the saddlepoint approximation is substantially faster than the score method with importance sampling. Thus, the suggested saddlepoint approximation can be conveniently used in various scientific problems.