937 resultados para glutaredoxins, disease resistance, flower development, glutathionylation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, Eucalyptus grandis is a key species for wood production. However, some genotypes are susceptible to rust (Puccinia psidii), mainly in São Paulo State, where climatic conditions are favorable for its development. Rust represents a high economic risk to forest companies because of the high potential of damage to commercial eucalypt plantations. The aims of the present study were (i) to select progenies of E. grandis for stability and adaptability regarding resistance to rust at different locations; (ii) compare the selections under these different climatic conditions; and (iii) compare rust severity in the field with the theoretical model. We observed that climatic conditions were extremely influential factors for rust development, but even under favorable conditions for disease development, we found rust-resistant progenies. In sites unfavorable for rust development, we detected highly susceptible progenies. We found significant correlation among the genetic material, environmental conditions and disease symptoms, however, we observed a simple genotype-environmental interaction and significant genetic variability among the progenies. The average heritability was high among the progenies in all sites, indicating substantial genetic control for rust resistance. We also observed a good relationship between rust severity in the field and the theoretical model that considered annual average temperature and leaf wetness. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic mapping has been used to identify a region of the host genome that determines resistance to fusiform rust disease in loblolly pine where no discrete, simply inherited resistance factors had been previously found by conventional genetic analysis over four decades. A resistance locus, behaving as a single dominant gene, was mapped by association with genetic markers, even though the disease phenotype deviated from the expected Mendelian ratio. The complexity of forest pathosystems and the limitations of genetic analysis, based solely on phenotype, had led to an assumption that effective long-term disease resistance in trees should be polygenic. However, our data show that effective long-term resistance can be obtained from a single qualitative resistance gene, despite the presence of virulence in the pathogen population. Therefore, disease resistance in this endemic coevolved forest pathosystem is not exclusively polygenic. Genomic mapping now provides a powerful tool for characterizing the genetic basis of host pathogen interactions in forest trees and other undomesticated, organisms, where conventional genetic analysis often is limited or not feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773. We are pursuing the isolation of I-3 from LA716 by map-based cloning. We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 as well as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium oxysporum is a soilborne fungal pathogen that causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. In this study, the interaction between F. oxysporum and the model plant Arabidopsis thaliana has been investigated to better understand the nature of host defences that are effective against the Fusarium wilt pathogen. The expression of salicylate- and jasmonate-responsive defence genes in F. oxysporum-challenged roots of A. thaliana plants as well as in the roots of plants whose leaves were treated with salicylate or jasmonate was analysed. Unexpectedly, genes (e.g. PR1, PDF1.2, and CHIB) encoding proteins with defensive functions or transcription factors (e.g. ERF1, AtERF2, AtERF4 and AtMYC2) known to positively or negatively regulate defences against F. oxysporum were not activated in F. oxysporum-inoculated roots. In contrast, the jasmonate-responsive defence gene PDF1.2 was induced in the leaves of plants whose roots were challenged with F. oxysporum, but the salicylate- responsive PR1 gene was not induced in the leaves of inoculated plants. Exogenous salicylic acid treatment prior to inoculation, however, activated PR1 and BGL2 defence gene expression in leaves and provided increased F. oxysporum resistance as evidenced by reduced foliar necrosis and plant death. Exogenous salicylic acid treatment of the foliar tissue did not activate defence gene expression in the roots of plants. This suggests that salicylate- dependent defences may function in foliar tissue to reduce the development of pathogen-induced wilting and necrosis. Despite the induction of defence gene expression in the leaves by jasmonate, this treatment did not lead to increased resistance to F. oxysporum. Overall, the results presented here suggest that the genetic manipulation of plant defence signalling pathways is a useful strategy to provide increased Fusarium wilt resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The necrotrophic fungal pathogen Fusarium pseudograminearum (F. pseudograminearum) causes crown rot disease (CR) in wheat. This host-pathogen interaction has not been studied previously at the molecular level. In this study. using real-time quantitative PCR, the expression of 26 selected wheat genes was examined 1, 2 and 4 days after inoculation of wheat seedlings of the CR susceptible cultivar Kennedy and the partially field-resistant cultivar Sunco. Reproducible induction of eight defence genes consisting of PR1.1, PR2 (beta,1-3 glucanase), PR3 (chitinase), PR4 (wheativin), PR5 (thaumatin-like protein). TaPERO (peroxidase), PR10 and TaGLP2a (germin-like) was observed. These genes were induced in both cultivars, however. some genes were induced more rapidly in Sunco than in Kennedy. MJ treatment also induced the above pathogen responsive defence genes in both cultivars while benzo(1,2,3)thiadiazole-7-carbothionic acid S-methyl ester (BTH) treatment weakly induced them in Kennedy only. Similarly. treatment with MJ before inoculation significantly delayed the development of necrotic symptoms for 2 weeks in both wheat cultivars, while BTH pre-treatments delayed symptom development in Kennedy only. The chemically induced protection, therefore, correlated with induction of the F. pseudograminearum-responsive genes. These results support the emerging role of jasmonate signalling in defence against necrotrophic fungal pathogens in monocots and future manipulation of this pathway may improve CR resistance in wheat. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, ‘Lady Finger’, were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3’ UTR, and independently transformed plant lines were regenerated for testing. Following a 12 week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 x Bcl-xL, 3 x Ced-9 and 2 x Bcl-2 3’ UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible ‘Lady Finger’ banana plants used as positive controls. Of these, one Bcl-2 3’ UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23 weeks post-inoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type ‘Lady Finger’ plants consistent with a necrotrophic phase in the lifecycle of this pathogen. This was further supported by the observed reduction of these effects in the roots of the resistant Bcl-2 3’ UTR transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana is one of the world’s most popular fruit crops and Sukali Ndizi is the most popular dessert banana in the East African region. Like other banana cultivars, Sukali Ndizi is threatened by several constraints, of which the Fusarium wilt disease is the most destructive. Fusarium wilt is caused by a soil-borne fungus, Fusarium oxysporum f.sp. cubense (Foc). No effective control strategy currently exists for this disease and although disease resistance exists in some banana cultivars, introducing resistance into commercial cultivars by conventional breeding is difficult because of low fertility. Considering that conventional breeding generates hybrids with additional undesirable traits, transformation is the most suitable way of introducing resistance in the banana genome. The success of this strategy depends on the availability of genes for genetic transformation. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi, including Foc race 1 in banana cultivar Lady Finger. This thesis explores the potential of a plant-codon optimised nematode anti-apoptosis gene (Mced9) to provide resistance against Foc race 1 in dessert banana cultivar Sukali Ndizi. Agrobacterium-mediated transformation was used to transform embryogenic cell suspension of Sukali Ndizi with plant expression vector pYC11, harbouring maize ubiquitin promoter driven Mced9 gene and nptII as a plant selection marker. A total of 42 independently transformed lines were regenerated and characterized. The transgenic lines were multiplied, infected and evaluated for resistance to Foc race 1 in a small pot bioassay. The pathogenicity of the Ugandan Foc race 1 isolate used for infection was pre-determined and the spore concentration was standardised for consistent infection and symptom development. This process involved challenging tissue culture plants of Sukali Ndizi, a Foc race 1 susceptible cultivar and Nakinyika, an East African Highland cultivar known to be resistant to Foc race 1, with Fusarium inoculum and observing external and internal disease symptom development. Rhizome discolouration symptoms were the best indicators of Fusarium wilt with yellowing being an early sign of disease. Three transgenic lines were found to show significantly less disease severities compared to the wild-type control plants after 13 weeks of infection, indicating that Mced9 has the potential to provide tolerance to Fusarium wilt in Sukali Ndizi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On occasion, virus-derived transgenes in plants can be poorly expressed and yet provide excellent virus resistance, and transgene constructs designed to supplement the expression of endogenous genes can have the effect of co-suppressing themselves and the endogenous genes. These two phenomena appear to result from the same post-transcriptional silencing mechanism, which operates by targeted-RNA degradation. Recent research into RNA-mediated virus resistance and co-suppression has provided insights into the interactions between plant viruses and their hosts, and spawned several models to explain the phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, whereas the tobacco FLO/LFY homologue, NFL, is expressed in vegetative tissues, suggesting that NFL specifies determinacy in the progenitor cells for both flowers and leaves. In this paper, we characterised the pea homologue of FLO/LFY. Results The pea cDNA homologue of FLO/LFY, PEAFLO, mapped to the uni locus in recombinant-inbred mapping populations and markers based on PEAFLO cosegregated with uni in segregating sibling populations. The characterisation of two spontaneous uni mutant alleles, one containing a deletion and the other a point mutation in the PEAFLO coding sequences, predicted that PEAFLO corresponds to UNI and that the mutant vegetative phenotype was conferred by the defective PEAFLO gene. Conclusions The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminacy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.