974 resultados para glucose transport


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmodium falciparum requires glucose as its energy source to multiply within erythrocytes but is separated from plasma by multiple membrane systems. The mechanism of delivery of substrates such as glucose to intraerythrocytic parasites is unclear. We have developed a system for robust functional expression in Xenopus oocytes of the P. falciparum asexual stage hexose permease, PfHT1, and have analyzed substrate specificities of PfHT1. We show that PfHT1 (a high-affinity glucose transporter, Km ≈ 1.0 mM) also transports fructose (Km ≈ 11.5 mM). Fructose can replace glucose as an energy source for intraerythrocytic parasites. PfHT1 binds fructose in a furanose conformation and glucose in a pyranose form. Fructose transport by PfHT1 is ablated by mutation of a single glutamine residue, Q169, which is predicted to lie within helix 5 of the hexose permeation pathway. Glucose transport in the Q169N mutant is preserved. Comparison in oocytes of transport properties of PfHT1 and human facilitative glucose transporter (GLUT)1, an archetypal mammalian hexose transporter, combined with studies on cultured P. falciparum, has clarified hexose permeation pathways in infected erythrocytes. Glucose and fructose enter erythrocytes through separate permeation pathways. Our studies suggest that both substrates enter parasites via PfHT1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel imaging technology, high-speed microscopy, has been used to visualize the process of GLUT4 translocation in response to insulin in single 3T3-L1 adipocytes. A key advantage of this technology is that it requires extremely low light exposure times, allowing the quasi-continuous capture of information over 20–30 min without photobleaching or photodamage. The half-time for the accumulation of GLUT4-eGFP (enhanced green fluorescent protein) at the plasma membrane in a single cell was found to be of 5–7 min at 37°C. This half-time is substantially longer than that of exocytic vesicle fusion in neuroendocrine cells, suggesting that additional regulatory mechanisms are involved in the stimulation of GLUT4 translocation by insulin. Analysis of four-dimensional images (3-D over time) revealed that, in response to insulin, GLUT4-eGFP-enriched vesicles rapidly travel from the juxtanuclear region to the plasma membrane. In nontransfected adipocytes, impairment of microtubule and actin filament function inhibited insulin-stimulated glucose transport by 70 and 50%, respectively. When both filament systems were impaired insulin-stimulated glucose transport was completely inhibited. Taken together, the data suggest that the regulation of long-range motility of GLUT4-containing vesicles through the interaction with microtubule- and actin-based cytoskeletal networks plays an important role in the overall effect of insulin on GLUT4 translocation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the role of glycogen synthase in controlling glycogen accumulation, we generated three lines of transgenic mice in which the enzyme was overexpressed in skeletal muscle by using promoter-enhancer elements derived from the mouse muscle creatine kinase gene. In all three lines, expression was highest in muscles composed primarily of fast-twitch fibers, such as the gastrocnemius and anterior tibialis. In these muscles, glycogen synthase activity was increased by as much as 10-fold, with concomitant increases (up to 5-fold) in the glycogen content. The uridine diphosphoglucose concentrations were markedly decreased, consistent with the increase in glycogen synthase activity. Levels of glycogen phosphorylase in these muscles increased (up to 3-fold), whereas the amount of the insulin-sensitive glucose transporter 4 either remained unchanged or decreased. The observation that increasing glycogen synthase enhances glycogen accumulation supports the conclusion that the activation of glycogen synthase, as well as glucose transport, contributes to the accumulation of glycogen in response to insulin in skeletal muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We recently analyzed experimental studies of mammalian muscle glycogen synthesis using metabolic control analysis and concluded that glycogen synthase (GSase) does not control the glycogenic flux but rather adapts to the flux which is controlled bv the activity of the proximal glucose transport and hexokinase steps. This model did not provide a role for the well established relationship between GSase fractional activity, determined by covalent phosphorylation, and the rate of glycogen synthesis. Here we propose that the phosphorylation of GSase, which alters the sensitivity to allosteric activation by glucose 6-phosphate (G6P), is a mechanism for controlling the concentration of G6P instead of controlling the flux. When the muscle cell is exposed to conditions which favor glycogen synthesis such as high plasma insulin and glucose concentrations the fractional activity of GSase is increased in coordination with increases in the activity of glucose transport and hexokinase. This increase in GSase fractional activity helps to maintain G6P homeostasis by reducing the G6P concentration required to activate GSase allosterically to match the flux determined by the proximal reactions. This role for covalent phosphorylation also provides a novel solution to the Kacser and Acarenza paradigm which requires coordinated activity changes of the enzymes proximal and distal to a shared intermediate, to avoid unwanted flux changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activity of glycogen synthase (GSase; EC 2.4.1.11) is regulated by covalent phosphorylation. Because of this regulation, GSase has generally been considered to control the rate of glycogen synthesis. This hypothesis is examined in light of recent in vivo NMR experiments on rat and human muscle and is found to be quantitatively inconsistent with the data under conditions of glycogen synthesis. Our first experiments showed that muscle glycogen synthesis was slower in non-insulin-dependent diabetics compared to normals and that their defect was in the glucose transporter/hexokinase (GT/HK) part of the pathway. From these and other in vivo NMR results a quantitative model is proposed in which the GT/HK steps control the rate of glycogen synthesis in normal humans and rat muscle. The flux through GSase is regulated to match the proximal steps by "feed forward" to glucose 6-phosphate, which is a positive allosteric effector of all forms of GSase. Recent in vivo NMR experiments specifically designed to test the model are analyzed by metabolic control theory and it is shown quantitatively that the GT/HK step controls the rate of glycogen synthesis. Preliminary evidence favors the transporter step. Several conclusions are significant: (i) glucose transport/hexokinase controls the glycogen synthesis flux; (ii) the role of covalent phosphorylation of GSase is to adapt the activity of the enzyme to the flux and to control the metabolite levels not the flux; (iii) the quantitative data needed for inferring and testing the present model of flux control depended upon advances of in vivo NMR methods that accurately measured the concentration of glucose 6-phosphate and the rate of glycogen synthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulin-like growth factor II (IGF-II) and its receptor, the IGF-II/mannose-6-phosphate (IGF-II/M6P) receptor, are first expressed from the zygotic genome at the two-cell stage of mouse development. However, their role is not clearly defined. Insulin-like growth factor II is believed to mediate growth through the heterologous type 1 IGF and insulin receptors, whereas the IGF-II/M6P receptor is believed to act as a negative regulator of somatic growth by limiting the availability of excess levels of IGF-II. These studies demonstrate that IGF-II does have a role in growth regulation in the early embryo through the IGF-II/M6P receptor. Insulin-like growth factor II stimulated cleavage rate in two-cell embryos in vitro. Moreover, this receptor is required for the glycaemic response of two-cell embryos to IGF-II and for normal progression of early embryos to the blastocyst stage. Improved development of embryos in crowded culture supports the concept of an endogenous embryonic paracrine activity that enhances cell proliferation. These responses indicate that the IGF-II/M6P receptor is functional and likely to participate in such a regulatory circuit. The functional role of IGF-II and its receptor is discussed with reference to regulation of early development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of P-32-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While our understanding of lipid microdomains has advanced in recent years, many aspects of their formation and dynamics are still unclear. In particular, the molecular determinants that facilitate the partitioning of integral membrane proteins into lipid raft domains are yet to be clarified. This review focuses on a family of raft-associated integral membrane proteins, termed flotillins, which belongs to a larger class of integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology (PHB) domain. A number of studies now suggest that eucaryotic proteins carrying this domain have affinity for lipid raft domains. The PHB domain is carried by a diverse array of proteins including stomatin, podocin, the archetypal PHB protein, prohibitin, lower eucaryotic proteins such as the Dictyostelium discoideum proteins vacuolin A and vacuolin B and the Caenorhabditis elegans proteins unc-1, unc-24 and mec-2. The presence of this domain in some procaryotic proteins suggests that the PHB domain may constitute a primordial lipid recognition motif. Recent work has provided new insights into the trafficking and targeting of flotillin and other PHB domain proteins. While the function of this large family of proteins remains unclear, studies of the C. elegans PHB proteins suggest possible links to a class of volatile anaesthetics raising the possibility that these lipophilic agents could influence lipid raft domains. This review will discuss recent insights into the cell biology of flotillins and the large family of evolutionarily conserved PHB domain proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim-/- cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impaired insulin action (insulin resistance) is a key factor in the pathogenesis of diabetes mellitus. To investigate therapeutic targets against insulin resistance, this thesis explores the mechanism of action of pharmacological agents and exogenous peptides known or suspected to modify insulin action. These included leptin, a hormone primarily involved in the regulation of body weight; sibutramine, an antiobesity agent; plant-derived compounds (pinitol and chamaemeloside) and agents known to affect insulin sensitivity, e.g. metformin, tolbutamide, thiazolidinediones, vanadyl sulphate and thioctic acid. Models used for investigation included the L6 skeletal muscle cell line and isolated skeletal muscles. In vivo studies were undertaken to investigate glycaemia, insulinaemia, satiety and body weight in streptozotocin-induced diabetic mice and obese (ob/ob) mice. Leptin acutely altered insulin action in skeletal muscle cells via the short form of the leptin receptor. This direct action of leptin was mediated via a pathway involving PI 3-kinase but not Jak2. The active metabolites of sibutramine had antidiabetic properties in vivo and directly improved insulin sensitivity in vitro. This effect appeared to be conducted via a non-PI 3-kinase-mediated increase in protein synthesis with facilitated glucose transport, and was independent of the serotonin and noradrenaline reuptake inhibition produced by sibutramine. Pinitol (a methyl inositol) had an insulin mimetic effect and was an effective glucose-lowering agent in insulinopenic states, acting directly on skeletal muscle. Conversely chamaemeloside appeared to improve glucose tolerance without directly altering glucose transport. Metformin directly increased basal glucose uptake independently of PI 3-kinase, possibly via an increase in the intrinsic activity of glucose transporters. Neither tolbutamide nor thiazolidinediones directly altered insulin sensitivity in L6 skeletal muscle cells: however vanadyl sulphate and thioctic acid increased glucose transport but appeared to exert toxic effects at therapeutic concentrations. Examination of glucose transport in skeletal muscle in this thesis has identified various components of post-receptor insulin signalling pathways which may be targeted to ameliorate insulin resistance. Type 2 Diabetes Mellitus Obesity L6 Skeletal Muscle Cells Glucose Transport Insulin Signalling 2

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The goal of the current study is to determine whether the ß-adrenoreceptor (ß-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-a2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human ß1-, ß2-, ß3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the ß3-AR with higher affinity (Kd 46±1nM) than the ß2-AR (Kd 71±3nM) while there was no binding to the ß1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various ß-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of ß3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of ß1- and ß2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific ß-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a ß-3AR, or possibly a ß2-AR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-t , explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-t environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal stretching during concussion alters glucose transport and reduces neuronal viability, also affecting other cells in the brain and the Blood Brain Barrier (BBB). Our hypothesis is that oxidative stress (OS) generated in neurons during concussions contributes to this outcome. To validate this, we investigated: (1) whether OS independently causes alterations in brain and BBB cells, namely human neuron-like, neuroblastoma cells (NCs), astrocyte cells (ACs) and brain microvascular endothelial cells (ECs), and (2) whether OS originated in NCs (as in concussion) is responsible for causing the subsequent alterations observed in ACs and ECs. We used H2O2 treatment to mimic OS, validated by examining the resulting reactive oxygen species, and evaluated alterations in cell morphology, expression and localization of the glucose transporter GLUT1, and the overall cell viability. Our results showed that OS, either directly affecting each cell type or originally affecting NCs, caused changes in several morphological parameters (surface area, Feret diameter, circularity, inter-cellular distance), slightly varied GLUT1 expression and lowered the overall cell viability of all NCs, ACs, and ECs. Therefore, we can conclude that oxidative stress, which is known to be generated during concussion, caused alterations in NCs, ACs, and ECs whether independently originated in each cell or when originated in the NCs and could further propagate the ACs and ECs.