944 resultados para global positioning systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major focus of this dissertation was to explain terroir effects that impact wine varietal character and to elucidate potential determinants of terroir by testing vine water status (VWS) as the major factor of the terroir effect. It was hypothesized that consistent water status zones could be identified within vineyard sites, and, that differences in vine performance, fruit composition and wine sensory attributes could be related to VWS. To test this hypothesis, ten commercial Riesling vineyards representative of each Vintners Quality Alliance sub-appellation were selected. Vineyards were delineated using global positioning systems and 75 to 80 sentinel vines per vineyard were geo-referenced for data collection. During the 2005 to 2007 growing seasons, VWS measurements [midday leaf water potential ('l')] were collected from a subset of these sentinel vines. Data were collected on soil texture and composition, soil moisture, vine performance (yield components, vine size) and fruit composition. These variables were mapped using global information system (GIS) software and relationships between them were elucidated. Vines were categorized into "low" and "high" water status regions within each vineyard block and replicate wines were made from each. Many geospatial patterns and relationships were spatially and temporally stable within vineyards. Leaf'l' was temporally stable within vineyards despite different weather conditions during each growing season. Generally, spatial relationships between 'l', soil moisture, vine size, berry weight and yield were stable from year to year. Leaf", impacted fruit composition in several vineyards. Through sorting tasks and multidimensional scaling, wines of similar VWS had similar sensory properties. Descriptive analysis further indicated that VWS impacted wine sensory profiles, with similar attributes being different for wines from different water status zones. Vineyard designation had an effect on wine profiles, with certain sensory and chemical attributes being associated from different subappellations. However, wines were generally grouped in terms of their regional designation ('Lakeshore', 'Bench', 'Plains') within the Niagara Peninsula. Through multivariate analyses, specific sensory attributes, viticulture and chemical variables were associated with wines of different VWS. Vine water status was a major contributor to the terroir effect, as it had a major impact on vine size, berry weight and wine sensory characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geocaching is a global treasure hunt that invites people of all ages to discover actively the beauty of their environment through the assistance of a Global Positioning Systems (GPS), mathematical know-how, and a bit of foraging. If you are seeking a new way to engage your students in a motivating and exciting real-life task, then geocaching might be the answer. The purpose of this article is to describe the experience of our shcool-based geocaching project undertaken with children in Prep (5-6) and the senior primary Grades (ages 10-12). We will share the potential for mathematical learning and engagement. It is argued that geocaching provides the opportunity for rich engagement with key mathematical concepts that goes beyond what can be acheived during a typical lesson.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a general framework for the analysis of animal telemetry data through the use of weighted distributions. It is shown that several interpretations of resource selection functions arise when constructed from the ratio of a use and availability distribution. Through the proposed general framework, several popular resource selection models are shown to be special cases of the general model by making assumptions about animal movement and behavior. The weighted distribution framework is shown to be easily extended to readily account for telemetry data that are highly auto-correlated; as is typical with use of new technology such as global positioning systems animal relocations. An analysis of simulated data using several models constructed within the proposed framework is also presented to illustrate the possible gains from the flexible modeling framework. The proposed model is applied to a brown bear data set from southeast Alaska.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduced mammals are major drivers of extinction. Feral goats (Capra hircus) are particularly devastating to island ecosystems, causing direct and indirect impacts through overgrazing, which often results in ecosystem degradation and biodiversity loss. Removing goat populations from islands is a powerful conservation tool to prevent extinctions and restore ecosystems. Goats have been eradicated successfully from 120 islands worldwide. With newly developed technology and techniques, island size is perhaps no longer a limiting factor in the successful removal of introduced goat populations. Furthermore,. the use of global positioning systems, geographic information systems, aerial hunting by helicopter specialized bunting dogs, and Judas goats has dramatically increased efficiency and significantly reduced the duration of eradication campaigns. Intensive monitoring programs are also critical for successful eradications. Because of the presence of humans with domestic goat populations on large islands, future island conservation actions will require eradication programs that involve local island inhabitants in a collaborative approach with biologists, sociologists, and educators. Given the clear biodiversity benefits, introduced goat populations should be routinely removed from islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of automation (specifically Global Positioning Systems (GPS)) and Information and Communications Technology (ICT) through the creation of a Total Jobsite Management Tool (TJMT) in construction contractor companies can revolutionize the way contractors do business. The key to this integration is the collection and processing of real-time GPS data that is produced on the jobsite for use in project management applications. This research study established the need for an effective planning and implementation framework to assist construction contractor companies in navigating the terrain of GPS and ICT use. An Implementation Framework was developed using the Action Research approach. The framework consists of three components, as follows: (i) ICT Infrastructure Model, (ii) Organizational Restructuring Model, and (iii) Cost/Benefit Analysis. The conceptual ICT infrastructure model was developed for the purpose of showing decision makers within highway construction companies how to collect, process, and use GPS data for project management applications. The organizational restructuring model was developed to assist companies in the analysis and redesign of business processes, data flows, core job responsibilities, and their organizational structure in order to obtain the maximum benefit at the least cost in implementing GPS as a TJMT. A cost-benefit analysis which identifies and quantifies the cost and benefits (both direct and indirect) was performed in the study to clearly demonstrate the advantages of using GPS as a TJMT. Finally, the study revealed that in order to successfully implement a program to utilize GPS data as a TJMT, it is important for construction companies to understand the various implementation and transitioning issues that arise when implementing this new technology and business strategy. In the study, Factors for Success were identified and ranked to allow a construction company to understand the factors that may contribute to or detract from the prospect for success during implementation. The Implementation Framework developed as a result of this study will serve to guide highway construction companies in the successful integration of GPS and ICT technologies for use as a TJMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Geomática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological development has enabled research- ers to gather data from different performance scenarios while considering players positioning and action events within a specific time frame. This technology varies from global positioning systems to radio frequency devices and computer vision tracking, to name the most common, and aims to collect players’ time motion data and enable the dynamical analysis of performance. Team sports—and in particular, invasion games—present a complex dynamic by nature based on the interaction between 2 opposing sides trying to outperform 1 another. During match and training situations, players’ actions are coupled to their performance context at different interaction levels. As expected, ball, teammates’, and opponents’ positioning play an important role in this interaction process. But other factors, such as final score, teams’ development level, and players’ expertise, seem to affect the match dynamics. In this symposium, we will focus on how different constraints affect invasion games dynamics during both match and training situations. This relation will be established while underpinning the importance of these effects to game teaching and performance optimization. Regarding the match, different performance indicators based on spatial-temporal relations between players and teams will be presented to reveal the interaction processes that form the crucial component of game analysis. Considering the training, this symposium will address the relationship of small-sided games with full- sized matches and will present how players’ dynamical interaction affects different performance indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)