981 resultados para global change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contributed to The input of PS and PCW contributes to the Belmont Forum/FACCE-JPI funded DEVIL project (NE/M021327/1) and for PS also contributes to the EU FP7 SmartSoil project (Project number: 289694)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contributed to The input of PS and PCW contributes to the Belmont Forum/FACCE-JPI funded DEVIL project (NE/M021327/1) and for PS also contributes to the EU FP7 SmartSoil project (Project number: 289694)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim The spread of non-indigenous species in marine ecosystems world-wide is one of today's most serious environmental concerns. Using mechanistic modelling, we investigated how global change relates to the invasion of European coasts by a non-native marine invertebrate, the Pacific oyster Crassostrea gigas. Location Bourgneuf Bay on the French Atlantic coast was considered as the northern boundary of C. gigas expansion at the time of its introduction to Europe in the 1970s. From this latitudinal reference, variations in the spatial distribution of the C. gigas reproductive niche were analysed along the north-western European coast from Gibraltar to Norway. Methods The effects of environmental variations on C. gigas physiology and phenology were studied using a bioenergetics model based on Dynamic Energy Budget theory. The model was forced with environmental time series including in situ phytoplankton data, and satellite data of sea surface temperature and suspended particulate matter concentration. Results Simulation outputs were successfully validated against in situ oyster growth data. In Bourgneuf Bay, the rise in seawater temperature and phytoplankton concentration has increased C. gigas reproductive effort and led to precocious spawning periods since the 1960s. At the European scale, seawater temperature increase caused a drastic northward shift (1400 km within 30 years) in the C. gigas reproductive niche and optimal thermal conditions for early life stage development. Main conclusions We demonstrated that the poleward expansion of the invasive species C. gigas is related to global warming and increase in phytoplankton abundance. The combination of mechanistic bioenergetics modelling with in situ and satellite environmental data is a valuable framework for ecosystem studies. It offers a generic approach to analyse historical geographical shifts and to predict the biogeographical changes expected to occur in a climate-changing world.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef-building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long-term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere-ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low- and high-climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM-resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985-2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30-50 years without an increase in thermal tolerance of 0.2-1.0 degrees C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An analysis of geomorphic system`s response to change in human and natural drivers in some areas within the Rio de la Plata basin is presented The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers Study areas of different size, socio-economic and geomorphic conditions have been selected: the Rio de la Plata estuary and three sub-basins within its watershed Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface Data on river discharge were also gathered Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the Sao Paulo metropolitan area Rates in the estuary are somewhere in between It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes It appears that a marked increase in denudation, of a ""technological"" nature, is taking place in this basin and leading to an acceleration of sediment supply This is coherent with similar increases observed in other regions (C) 2010 Elsevier B V All rights reserved

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The impacts of climate change in the potential distribution and relative abundance of a C3 shrubby vine, Cryptostegia grandiflora, were investigated using the CLIMEX modelling package. Based upon its current naturalised distribution, C. grandiflora appears to occupy only a small fraction of its potential distribution in Australia under current climatic conditions; mostly in apparently sub-optimal habitat. The potential distribution of C. grandiflora is sensitive towards changes in climate and atmospheric chemistry in the expected range of this century, particularly those that result in increased temperature and water use efficiency. Climate change is likely to increase the potential distribution and abundance of the plant, further increasing the area at risk of invasion, and threatening the viability of current control strategies markedly. By identifying areas at risk of invasion, and vulnerabilities of control strategies, this analysis demonstrates the utility of climate models for providing information suitable to help formulate large-scale, long-term strategic plans for controlling biotic invasions. The effects of climate change upon the potential distribution of C. grandiflora are sufficiently great that strategic control plans for biotic invasions should routinely include their consideration. Whilst the effect of climate change upon the efficacy of introduced biological control agents remain unknown, their possible effect in the potential distribution of C. grandiflora will likely depend not only upon their effects on the population dynamics of C. grandiflora, but also on the gradient of climatic suitability adjacent to each segment of the range boundary.