138 resultados para ghosts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the BRST charge for the N = 2 superstring system can be written as Q = e(-R)(phi dz/2 pi ib gamma(+)gamma(-))e(R), when b and gamma(+/-) are super-reparametrizations ghosts. This provides a trivial proof of the nilpotence of this operator. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SIDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After adding a pair of non-minimal fields and performing a similarity transformation, the BRST operator in the pure spinor formalism is expressed as a conventional-looking BRST operator involving the Virasoro constraint and (b, c) ghosts, together with 12 fermionic constraints. This BRST operator can be obtained by gauge-fixing the Green-Schwarz superstring where the 8 first-class and 8 second-class Green-Schwarz constraints are combined into 12 first-class constraints. Alternatively, the pure spinor BRST operator can be obtained from the RNS formalism by twisting the ten spin-half RNS fermions into five spin-one and five spin-zero fermions, and using the SO(10)/U(5) pure spinor variables to parameterize the different ways of twisting. GSO(-) vertex operators in the pure spinor formalism are constructed using spin fields and picture-changing operators in a manner analogous to Ramond vertex operators in the RNS formalism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We write the BRST operator of the N = 1 superstring as, Q = e-R(1/2πiφdzγ2b)eR where y and b are super-reparameterization ghosts. This provides a trivial proof that Q is nilpotent. © 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.