959 resultados para geometries
Resumo:
Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.
Resumo:
We present a method to compute, assuming a continuous distribution of sources, the elementary potential created by a differential element of volume of matter, whose integral generates a known adsorption field V(z) for a planar surface. We show that this elementary potential is univocally determined by the original field and can be used to generate adsorption potentials for other nontrivial geometries. We illustrate the method for the Chizmeshya-Cole-Zaremba physisorption potential and discuss several examples and applications.
Resumo:
Friction welding is a solid state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanical induced rubbing motion and applied load. In rotary friction welding technique heat is generated by the conversion of mechanical energy into thermal energy at the interface of the work pieces during rotation under pressure. Traditionally friction welding is carried out on a dedicated machine because of its adaptability to mass production. In the present work, steps were made to modify a conventional lathe to rotary friction welding set up to obtain friction welding with different interface surface geometries at two different speeds and to carry out tensile characteristic studies. The surface geometries welded include flat-flat, flat-tapered, tapered-tapered, concave-convex and convex-convex. A comparison of maximum load, breaking load and percentage elongation of different welded geometries has been realized through this project. The maximum load and breaking load were found to be highest for weld formed between rotating flat and stationary tapered at 500RPM and the values were 19.219kN and 14.28 kN respectively. The percentage elongation was found to be highest for weld formed between rotating flat and stationary flat at 500RPM and the value was 21.4%. Hence from the studies it is cleared that process parameter like “interfacing surface geometries” of weld specimens have strong influence on tensile characteristics of friction welded joints
The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries
Resumo:
The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.
Resumo:
A study was conducted on the methods of basis set superposition error (BSSE)-free geometry optimization and frequency calculations in clusters larger than a dimer. In particular, three different counterpoise schemes were critically examined. It was shown that the counterpoise-corrected supermolecule energy can be easily obtained in all the cases by using the many-body partitioning of energy
Resumo:
La visió és probablement el nostre sentit més dominant a partir del qual derivem la majoria d'informació del món que ens envolta. A través de la visió podem percebre com són les coses, on són i com es mouen. En les imatges que percebem amb el nostre sistema de visió podem extreure'n característiques com el color, la textura i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins i tot quan s'observen sota unes condicions totalment diferents. Per exemple, som capaços de distingir un mateix objecte si l'observem des de diferents punts de vista, distància, condicions d'il·luminació, etc. La Visió per Computador intenta emular el sistema de visió humà mitjançant un sistema de captura d'imatges, un ordinador, i un conjunt de programes. L'objectiu desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge d'una manera similar com ho realitzaria una persona. Aquesta tesi es centra en l'anàlisi de la textura per tal de realitzar el reconeixement de superfícies. La motivació principal és resoldre el problema de la classificació de superfícies texturades quan han estat capturades sota diferents condicions, com ara distància de la càmera o direcció de la il·luminació. D'aquesta forma s'aconsegueix reduir els errors de classificació provocats per aquests canvis en les condicions de captura. En aquest treball es presenta detalladament un sistema de reconeixement de textures que ens permet classificar imatges de diferents superfícies capturades en diferents condicions. El sistema proposat es basa en un model 3D de la superfície (que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada posteriorment per un mètode de predicció de textures amb l'objectiu de generar noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges virtuals que es generen seran la base del nostre sistema de reconeixement, ja que seran utilitzades com a models de referència per al nostre classificador de textures. El sistema de reconeixement proposat combina les Matrius de Co-ocurrència per a l'extracció de característiques de textura, amb la utilització del Classificador del veí més proper. Aquest classificador ens permet al mateix temps aproximar la direcció d'il·luminació present en les imatges que s'utilitzen per testejar el sistema de reconeixement. És a dir, serem capaços de predir l'angle d'il·luminació sota el qual han estat capturades les imatges de test. Els resultats obtinguts en els diferents experiments que s'han realitzat demostren la viabilitat del sistema de predicció de textures, així com del sistema de reconeixement.
Resumo:
The interaction of a terahertz beam with a sample containing a material boundary across the profile of the terahertz beam produces characteristic spectroscopic detail. A full vectorial model is presented to quantify boundary definition for a series of wedged geometries. As a result of this work, using simple geometric forms, we wish to be able to extend these ideas to characterize boundaries in more irregular samples, impacting most application areas of pulsed terahertz radiation.
Resumo:
An algorithm based on flux difference splitting is presented for the solution of two-dimensional, open channel flows. A transformation maps a non-rectangular, physical domain into a rectangular one. The governing equations are then the shallow water equations, including terms of slope and friction, in a generalized coordinate system. A regular mesh on a rectangular computational domain can then be employed. The resulting scheme has good jump capturing properties and the advantage of using boundary/body-fitted meshes. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
The surface geometries of the p (root7- x root7)R19degrees-(4CO) and c(2 x 4)-(2CO) layers on Ni {111} and the clean Ni {111} surface were determined by low energy electron diffraction structure analysis. For the clean surface small but significant contractions of d(12) and d(23) (both 2.02 Angstrom) were found with respect to the bulk interlayer distance (2.03 Angstrom). In the c(2 x 4)-(2CO) structure these distances are expanded, with values of d(12) = 2.08 Angstrom and d(23) = 2.06 Angstrom and buckling of 0.08 and 0.02 Angstrom, respectively, in the first and second layer. CO resides near hcp and fcc hollow sites with relatively large lateral shifts away from the ideal positions leading to unequal C-Ni bond lengths between 1.76 and 1.99 Angstrom. For the p(root7- x root7-)R19'-(4CO) layer two best fit geometries were found, which agree in most of their atomic positions, except for one out of four CO molecules, which is either near atop or between bridge and atop. The remaining three molecules reside near hcp and fcc sites, again with large lateral deviations from their ideal positions. The average C Ni bond length for these molecules is, however, the same as for CO on hollow sites at low coverage. The average CNi bond length at hollow sites, the interlayer distances, and buckling in the first Ni layer are similar to the c(2 x 4)(2CO) geometry, only the buckling in the second layer (0.08 Angstrom) is significantly larger. Lateral and vertical shifts of the Ni atoms in the first layer lead to unsymmetric environments for the CO molecules, which can be regarded as an imprint of the chiral p(root7- x root7-)R19degrees lattice geometry onto the substrate.
Resumo:
A periodic structure of finite extent is embedded within an otherwise uniform two-dimensional system consisting of finite-depth fluid covered by a thin elastic plate. An incident harmonic flexural-gravity wave is scattered by the structure. By using an approximation to the corresponding linearised boundary value problem that is based on a slowly varying structure in conjunction with a transfer matrix formulation, a method is developed that generates the whole solution from that for just one cycle of the structure, providing both computational savings and insight into the scattering process. Numerical results show that variations in the plate produce strong resonances about the ‘Bragg frequencies’ for relatively few periods. We find that certain geometrical variations in the plate generate these resonances above the Bragg value, whereas other geometries produce the resonance below the Bragg value. The familiar resonances due to periodic bed undulations tend to be damped by the plate.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine's capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine's potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
We present analytical and numerical results for the specific heat and susceptibility amplitude ratios in parallel plate geometries. The results are derived using field-theoretic techniques suitable to describe the system in the bulk limit, i.e., (L/ξ±)≫ 1, where L is the distance between the plates and ξ± is the correlation length above (+) and below (-) the bulk critical temperature. Advantages and drawbacks of our method are discussed in the light of other approaches previously reported in the literature.