995 resultados para genetic gains
Resumo:
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.
Resumo:
Selection experiments with the herbivorous blunt snout bream or Wuchang bream (Megalobrama amblycephala) were started in 1985. Mass selection for size and length/depth ratio resulted in a significant increase in growth and better shape, while inbreeding led to a significant decrease in growth. The total selection ratio from fry to mature brooders was about 0.03 per cent per generation. In the grow out stage, the average daily body weight gains of two lines of fifth generation (F5) fish were 29 per cent and 20 per cent respectively more than the control group, with an average of 5.8 per cent and 4 per cent improvements per generation, respectively. The body was 4 per cent deeper in ratio of standard length/body depth. The effects of inbreeding were examined by crossing full-sibs, the offspring of which were kept without selection. The third generation inbred fish showed 17 per cent lower growth as compared to the control group, with an average of 7.5 per cent per generation. The results demonstrate that selection is a powerful tool to improve the economic traits of the blunt snout bream, but inbreeding can rapidly lead to a reduction in performance. In 2000, the 6th generation of selected bream was certified by the Chinese Ministry of Agriculture as a good breed for aquaculture.
Resumo:
Background: The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped. ----- Methods: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets. ----- Results: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams. ----- Conclusions: Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.
Resumo:
Data comprising 53,181 calving records were analyzed to estimate the genetic correlation between days to calving (DC), and days to first calving (DFC), and the following traits: scrotal circumference (SC), age at first calving (AFC), and weight adjusted for 550 d of age (W550) in a Nelore herd. (Co)variance components were estimated using the REML method fitting bivariate animal models. The fixed effects considered for DC were contemporary group, month of last calving, and age at breeding season (linear and quadratic effects). Contemporary groups were composed by herd, year, season, and management group at birth; herd and management group at weaning; herd, season, and management group at mating; and sex of calf and mating type (multiple sires, single sire, or AI). In DFC analysis, the same fixed effects were considered excluding the month of last calving. For DC, a repeatability animal model was applied. Noncalvers were not considered in analyses because an attempt to include them, attributing a penalty, did not improve the identification of genetic differences between animals. Heritability estimates ranged from 0.04 to 0.06 for DC, from 0.06 to 0.13 for DFC, from 0.42 to 0.44 for SC, from 0.06 to 0.08 for AFC, and was 0.30 for W550. The genetic correlation estimated between DC and SC was low and negative (-0.10), between DC and AFC was high and positive (0.76), and between DC and W550 was almost null (0.07). Similar results were found for genetic correlation estimates between DFC and SC (-0.14), AFC (0.94), and W550 (-0.02). The genetic correlation estimates indicate that the use of DC in the selection of beef cattle may promote favorable correlated responses to age at first mating and, consequently, higher gains in sexual precocity can be expected.
Resumo:
Foram estimados os coeficientes de herdabilidade e a mudança genética para peso à desmama (PD), peso ao sobreano (PS), ganho de peso do nascimento à desmama (GND), ganho de peso da desmama ao sobreano (GDS), perímetro escrotal (PE) e idade ao primeiro parto (IPP) em animais da raça Nelore. Foram utilizados dados de 128.148 animais nascidos entre 1984 e 2006. Os componentes de variância foram estimados pelo método da máxima verossimilhança restrita, e os valores genéticos foram preditos por modelos mistos aplicando-se modelo animal bicaracterística, incluindo peso à desmama em todas as análises. As tendências genéticas foram estimadas pela regressão dos valores genéticos sobre o ano de nascimento dos animais. Os coeficientes de herdabilidade do efeito direto estimados foram de 0,23 (0,07) (PD); 0,24 (0,02) (PS); 0,21 (0,01) (GND); 0,23 (0,01) (GDS); 0,46 (0,02) (PE) e 0,15 (0,01) (IPP). As tendências genéticas diretas estimadas foram de 0,171 (0,01); 0,219 (0,02); 0,186 (0,03) e 0,224 (0,02) kg/ano para PD, PS, GND e GDS, respectivamente, o que representa incrementos de 0,10; 0,08; 0,13 e 0,22% nas médias das mesmas características ao ano, respectivamente. Para o PE e a IPP no período de 1984 a 1995, as tendências genéticas foram nulas, com valores de 0,011 (0,03) cm/ano e -0,003 (0,06) dias/ano, respectivamente. No segundo período considerado (1996 a 2006), as tendências genéticas para PE e IPP foram de 0,069 (0,01) cm/ano e -3,024 (0,04) dias/ano, respectivamente, indicando melhorias consideráveis em tais características. Esses valores sugerem que características produtivas e reprodutivas, quando utilizadas como critério de seleção, proporcionam progresso genético no rebanho, sendo indicadas para seleção de animais da raça Nelore.
Resumo:
Dados de 23.120 animais da raça Nelore foram utilizados para estimar herdabilidade e correlações genéticas para a idade ao primeiro parto, o ganho em peso da desmama ao ano e do ano ao sobreano, o peso à desmama, o peso ao ano, o peso ao sobreano e os pesos aos 2 e aos 5 anos de idade. Utilizou-se o método da máxima verossimilhança restrita, em análise multicaracterística. As herdabilidades estimadas para idade ao primeiro parto, ganho da desmama ao ano, ganho do ano ao sobreano, peso à desmama, peso ao ano, peso ao sobreano e peso aos 2 aos 5 anos foram de 0,17 ± 0,01; 0,23 ± 0,03; 0,25 ± 0,03; 0,28 ± 0,02; 0,26 ± 0,03; 0,30 ± 0,03; 0,32 ± 0,02 e 0,36 ± 0,04, respectivamente. Correlações genéticas baixas e negativas foram estimadas entre a idade ao primeiro parto e os pesos medidos em diferentes idades, que variaram de -0,26 a -0,14. As correlações genéticas estimadas entre a idade ao primeiro parto e os ganhos de peso também foram negativas, porém levemente superiores (-0,29 e -0,32). Os resultados indicam que a seleção para maior ganho de peso pode reduzir a idade ao primeiro parto e aumentar o peso adulto de fêmeas da raça Nelore. Mudança genética mais rápida para diminuição da idade ao primeiro parto das fêmeas pode ser obtida com a inclusão dessa característica nos índices de seleção.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Genetic biomarkers of head and neck tumors could be useful for distinguishing among patients with similar clinical and histopathologic characteristics but having differential probabilities of survival. The purpose of this study was to investigate chromosomal alterations in head and neck carcinomas and to correlate the results with clinical and epidentiologic variables.Experimental Design: Cytogenetic analysis of short-term cultures from 64 primary untreated head and neck squamous cell carcinomas was used to determine the overall pattern of chromosome aberrations. A representative subset of tumors was analyzed in detail by spectral karyotyping and/or confirmatory fluorescence in situ hybridization analysis.Results: Recurrent losses of chromosomes Y (26 cases) and 19 (14 cases), and gains of chromosomes 22 (23 cases), 8 and 20 (11 cases each) were observed. The most frequent structural aberration was del(22)(q13.1) followed by rearrangements involving 6q and 12p. The presence of specific cytogenetic aberrations was found to correlate significantly with an unfavorable outcome. There was a significant association between survival and gains in chromosomes 10 (P = 0.008) and 20 (P = 0.002) and losses of chromosomes 15 (P = 0.005) and 22 (P = 0.021). Univariate analysis indicated that acquisition of monosomy 17 was a significant (P = 0.0012) factor for patients with a previous family history of cancer.Conclusions: the significant associations found in this study emphasize that alterations of distinct regions of the genome may be genetic biomarkers for a poor prognosis. Losses of chromosomes 17 and 22 can be associated with a family history of cancer.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Genetic parameters for test-day milk yield, 305-day milk yield, and lactation length in Guzerat cows
Resumo:
Milk production in tropical environments requires the use of crossbreeding systems including breeds well adapted to harsh conditions, but with lower productivities when compared to specialized breeds. Besides the genetic improvement for milk production, lactation lengths also need to be studied for most of these breeds. Accordingly, genetic parameters were estimated for 305-day cumulative milk yield (MY305), test-day milk yield (TDMY), and lactation length (LL) using information from the first lactations of 2816 Guzerat cows selected for milk production in 28 herds in Brazil. Contemporary groups were defined as herd, year and season of the test for TDMY, and as herd, year and season of calving for MY305 and LL. Variance components were estimated with the restricted maximum likelihood method under a multi-trait animal model. Heritabilities estimated for TDMY ranged from 0.16 to 0.24, and were 0.24 and 0.12 for MY305 and LL, respectively. Genetic correlations were high and positive, ranging from 0.51 to 0.99 among TDMY records, from 0.81 to 0.98 between each TDMY and MY305, and from 0.71 to 0.94 between each TDMY and LL. Genetic parameters obtained in this study indicated the possibility of using test-day records for the prediction of breeding values for milk yield in this population of the Guzerat breed. The use of TDMY as selection criteria would result in indirect gains in MY305 and LL. However, the highest response to selection for MY305 would be obtained by direct selection for this trait. © 2012 Elsevier B.V.
Resumo:
The objective of this study was to estimate genetic parameters for female mature weight (FMW), age at first calving (AFC), weight gain from birth to 120 days (WG_B_120), from 210 to 365 days (WG_210_365), rib eye area (REA), back fat thickness (BF), rump fat (RF) and body weight at scanning date (BWS) using single and multiple-trait animal models by the REML method from Nellore cattle data. The estimates of heritability ranged from 0.163±0.011 for WG_210_365 to 0.309±0.028 for RF using the single-trait model and from 0.163±0.010 for WG_210_365 to 0.382±0.025 for BWS using the multiple-trait model. The estimates of genetic correlations ranged from -0.35±0.08 between AFC with BF to 0.69±0.04 between WG_B_120 with BWS. Selection for weights gains, REA, and BWS can improve FMW. © 2013 Elsevier B.V.