959 resultados para generalized canonical correlation analysis
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.
Resumo:
When laboratory intercomparison exercises are conducted, there is no a priori dependence of the concentration of a certain compound determined in one laboratory to that determined by another(s). The same applies when comparing different methodologies. A existing data set of total mercury readings in fish muscle samples involved in a Brazilian intercomparison exercise was used to show that correlation analysis is the most effective statistical tool in this kind of experiments. Problems associated with alternative analytical tools such as mean or paired 't'-test comparison and regression analysis are discussed.
Resumo:
PURPOSE: To investigate relationship between placental thickness during the second and third trimesters and placental and birth weights. METHODS: From January 2011 to June 2012, a total of 250 singleton pregnant women presented at our antenatal clinic were enrolled in this prospective study. All recruited women were assessed at the 1st trimester screening for baseline demographic and obstetric data. The placental thickness was measured trans-abdominally by placing the ultrasound transducer perpendicularly to the plane of the placenta, in the area of the cord insertion at second and third trimester. Pearson's correlation analysis was used to establish the degree of relationship between placental thickness and birth and placental weights. RESULTS: Of 250 recruited participants, 205 women were able to complete the study. The mean age of cases was 26.4±5.1. Values of mean birth and placental weights were 305.56±657.0 and 551.7±104.8 grams respectively. Ultrasonographic measures of placental thickness in second and third trimester and changes between them were 21.68±4.52, 36.26±6.46 and 14.67±5.67 mm respectively. There was a significant positive correlation between placental thickness and birth weight in the second and third trimesters (r=0.15, p=0.03; r=0.14, p=0.04 correspondingly). CONCLUSION: According to our study, birth weight has a positive relation with both second and third trimester placental thickness; however, placental thickness change could not predict low birth weight.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
The definition of knowledge as justified true belief is the best we presently have. However, the canonical tripartite analysis of knowledge does not do justice to it due to a Platonic conception of a priori truth that puts the cart before the horse. Within a pragmatic approach, I argue that by doing away with a priori truth, namely by submitting truth to justification, and by accordingly altering the canonical analysis of knowledge, this is a fruitful definition. So fruitful indeed that it renders the Gettier counterexamples vacuous, allowing positive work in epistemology and related disciplines.
Resumo:
I t is generally accepted among scholars that individual learning and team learning contribute to the concept we refer to as organizational learning. However, a small number of quantitative and qualitative studies that have investigated their relationship reported contradicting results. This thesis investigated the relationship between individual learning, team learning, and organizational learning. A survey instrument was used to collect information on individual learning, team learning, and organizational learning. The study sample comprised of supervisors from the clinical laboratories in teaching hospitals and community hospitals in Ontario. The analyses utilized a linear regression to investigate the relationship between individual and team learning. The relationship between individual and organizational learning, and team and organizational learning were simultaneously investigated with canonical correlation and set correlation. T-test and multivariate analysis of variance were used to compare the differences in learning scores of respondents employed by laboratories in teaching and those employed by community hospitals. The study validated its tests results with 1,000 bootstrap replications. Results from this study suggest that there are moderate correlations between individual learning and team learning. The correlation individual learning and organizational learning and team learning and organizational learning appeared to be weak. The scores of the three learning levels show statistically significant differences between respondents from laboratories in teaching hospitals and respondents from community hospitals.
Resumo:
Several Authors Have Discussed Recently the Limited Dependent Variable Regression Model with Serial Correlation Between Residuals. the Pseudo-Maximum Likelihood Estimators Obtained by Ignoring Serial Correlation Altogether, Have Been Shown to Be Consistent. We Present Alternative Pseudo-Maximum Likelihood Estimators Which Are Obtained by Ignoring Serial Correlation Only Selectively. Monte Carlo Experiments on a Model with First Order Serial Correlation Suggest That Our Alternative Estimators Have Substantially Lower Mean-Squared Errors in Medium Size and Small Samples, Especially When the Serial Correlation Coefficient Is High. the Same Experiments Also Suggest That the True Level of the Confidence Intervals Established with Our Estimators by Assuming Asymptotic Normality, Is Somewhat Lower Than the Intended Level. Although the Paper Focuses on Models with Only First Order Serial Correlation, the Generalization of the Proposed Approach to Serial Correlation of Higher Order Is Also Discussed Briefly.
Resumo:
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.
Resumo:
Study Design. Reliability study. Objectives. To assess between-acquisition reliability of new multilevel trunk cross sections measurements, in order to define what is a real change when comparing 2 trunk surface acquisitions of a same patient, before and after surgery or throughout the clinical monitoring. Summary of Background Data. Several cross-sectional surface measurements have been proposed in the literature for noninvasive assessment of trunk deformity in patients with adolescent idiopathic scoliosis (AIS). However, only the maximum values along the trunk are evaluated and used for monitoring progression and assessing treatment outcome. Methods. Back surface rotation (BSR), trunk rotation (TR), and coronal and sagittal trunk deviation are computed on 300 cross sections of the trunk. Each set of 300 measures is represented as a single functional data, using a set of basis functions. To evaluate between-acquisition variability at all trunk levels, a test-retest reliability study is conducted on 35 patients with AIS. A functional correlation analysis is also carried out to evaluate any redundancy between the measurements. Results. Each set of 300 measures was successfully described using only 10 basis functions. The test-retest reliability of the functional measurements is good to very good all over the trunk, except above the shoulders level. The typical errors of measurement are between 1.20° and 2.2° for the rotational measures and between 2 and 6 mm for deviation measures. There is a very strong correlation between BSR and TR all over the trunk, a moderate correlation between coronal trunk deviation and both BSR and TR, and no correlation between sagittal trunk deviation and any other measurement. Conclusion. This novel representation of trunk surface measurements allows for a global assessment of trunk surface deformity. Multilevel trunk measurements provide a broader perspective of the trunk deformity and allow a reliable multilevel monitoring during clinical follow-up of patients with AIS and a reliable assessment of the esthetic outcome after surgery.
Resumo:
The composition and variability of heterotrophic bacteria along the shelf sediments of south west coast of India and its relationship with the sediment biogeochemistry was investigated. The bacterial abundance ranged from 1.12 x 103 – 1.88 x 106 CFU g-1 dry wt. of sediment. The population showed significant positive correlation with silt (r = 0.529, p< 0.05), organic carbon (OC) (r = 0.679, p< 0.05), total nitrogen (TN) (r = 0.638, p< 0.05), total protein (TPRT) (r = 0.615, p< 0.05) and total carbohydrate (TCHO) (r = 0.675, p< 0.05) and significant negative correlation with sand (r = -0.488, p< 0.05). Community was mainly composed of Bacillus, Alteromonas, Vibrio, Coryneforms, Micrococcus, Planococcus, Staphylococcus, Moraxella, Alcaligenes, Enterobacteriaceae, Pseudomonas, Acinetobacter, Flavobacterium and Aeromonas. BIOENV analysis explained the best possible environmental parameters i.e., carbohydrate, total nitrogen, temperature, pH and sand at 50m depth and organic matter, BPC, protein, lipid and temperature at 200m depth controlling the distribution pattern of heterotrophic bacterial population in shelf sediments. The Principal Component Analysis (PCA) of the environmental variables showed that the first and second principal component accounted for 65% and 30.6% of the data variance respectively. Canonical Correspondence Analysis (CCA) revealed a strong correspondence between bacterial distribution and environmental variables in the study area. Moreover, non-metric MDS (Multidimensional Scaling) analysis demarcated the northern and southern latitudes of the study area based on the bioavailable organic matter
Resumo:
This thesis entitled “Studies on Nitrifying Microorganisms in Cochin Estuary and Adjacent Coastal Waters” reports for the first time the spatial andtemporal variations in the abundance and activity of nitrifiers (Ammonia oxidizingbacteria-AOB; Nitrite oxidizing bacteria- NOB and Ammonia oxidizing archaea-AOA) from the Cochin Estuary (CE), a monsoon driven, nutrient rich tropicalestuary along the southwest coast of India. To fulfil the above objectives, field observations were carried out for aperiod of one year (2011) in the CE. Surface (1 m below surface) and near-bottomwater samples were collected from four locations (stations 1 to 3 in estuary and 4 in coastal region), covering pre-monsoon, monsoon and post-monsoon seasons. Station 1 is a low saline station (salinity range 0-10) with high freshwater influx While stations 2 and 3 are intermediately saline stations (salinity ranges 10-25). Station 4 is located ~20 km away from station 3 with least influence of fresh water and is considered as high saline (salinity range 25- 35) station. Ambient physicochemical parameters like temperature, pH, salinity, dissolved oxygen (DO), Ammonium, nitrite, nitrate, phosphate and silicate of surface and bottom waters were measured using standard techniques. Abundance of Eubacteria, total Archaea and ammonia and nitrite oxidizing bacteria (AOB and NOB) were quantified using Fluorescent in situ Hybridization (FISH) with oligonucleotide probes labeled withCy3. Community structure of AOB and AOA was studied using PCR Denaturing Gradient Gel Electrophoresis (DGGE) technique. PCR products were cloned and sequenced to determine approximate phylogenetic affiliations. Nitrification rate in the water samples were analyzed using chemical NaClO3 (inhibitor of nitrite oxidation), and ATU (inhibitor of ammonium oxidation). Contribution of AOA and AOB in ammonia oxidation process was measured based on the recovered ammonia oxidation rate. The contribution of AOB and AOA were analyzed after inhibiting the activities of AOB and AOA separately using specific protein inhibitors. To understand the factors influencing or controlling nitrification, various statistical tools were used viz. Karl Pearson’s correlation (to find out the relationship between environmental parameters, bacterial abundance and activity), three-way ANOVA (to find out the significant variation between observations), Canonical Discriminant Analysis (CDA) (for the discrimination of stations based on observations), Multivariate statistics, Principal components analysis (PCA) and Step up multiple regression model (SMRM) (First order interaction effects were applied to determine the significantly contributing biological and environmental parameters to the numerical abundance of nitrifiers). In the CE, nitrification is modulated by the complex interplay between different nitrifiers and environmental variables which in turn is dictated by various hydrodynamic characteristics like fresh water discharge and seawater influx brought in by river water discharge and flushing. AOB in the CE are more adapted to varying environmental conditions compared to AOA though the diversity of AOA is higher than AOB. The abundance and seasonality of AOB and NOB is influenced by the concentration of ammonia in the water column. AOB are the major players in modulating ammonia oxidation process in the water column of CE. The distribution pattern and seasonality of AOB and NOB in the CE suggest that these organisms coexist, and are responsible for modulating the entire nitrification process in the estuary. This process is fuelled by the cross feeding among different nitrifiers, which in turn is dictated by nutrient levels especially ammonia. Though nitrification modulates the increasing anthropogenic ammonia concentration the anthropogenic inputs have to be controlled to prevent eutrophication and associated environmental changes.
Resumo:
In this paper, investment cost asymmetry is introduced in order to test wheter this kind of asymmetry can account for asymmetries in business cycles. By using a smooth transition function, asymmetric investment cost is modeled and introduced in a canonical RBC model. Simulations of the model with Perturbations Method (PM) are very close to simulations through Parameterized Expectations Algorithm (PEA), which allows the use of the former for the sake of time reduction and computational costs. Both symmetric and asymmetric models were simulated and compared. Deterministic and stochastic impulse-response excersices revealed that it is possible to adequately reproduce asymmetric business cycles by modeling asymmetric investment costs. Simulations also showed that higher order moments are insu_cient to detect asymmetries. Instead, methods such as Generalized Impulse Response Analysis (GIRA) and Nonlinear Econometrics prove to be more e_cient diagnostic tools.
Resumo:
Water table response to rainfall was investigated at six sites in the Upper, Middle and Lower Chalk of southern England. Daily time series of rainfall and borehole water level were cross-corretated to investigate seasonal variations in groundwater-level response times, based on periods of 3-month duration. The time tags (in days) yielding significant correlations were compared with the average unsaturated zone thickness during each 3-month period. In general, for cases when the unsaturated zone was greater than 18 m thick, the time tag for a significant water-level response increased rapidly once the depth to the water table exceeded a critical value, which varied from site to site. For shallower water tables, a linear relationship between the depth to the water table and the water-level response time was evident. The observed variations in response time can only be partially accounted for using a diffusive model for propagation through the unsaturated matrix, suggesting that some fissure flow was occurring. The majority of rapid responses were observed during the winter/spring recharge period, when the unsaturated zone is thinnest and the unsaturated zone moisture content is highest, and were more likely to occur when the rainfall intensity exceeded 5 mm/day. At some sites, a very rapid response within 24 h of rainfall was observed in addition to the longer term responses even when the unsaturated zone was up to 64 m thick. This response was generally associated with the autumn period. The results of the cross-correlation analysis provide statistical support for the presence of fissure flow and for the contribution of multiple pathways through the unsaturated zone to groundwater recharge. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The antioxidant capacity of oak wood used in the ageing of wine was studied by four different methods: measurement of scavenging capacity against a given radical (ABTS, DPPH), oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP). Although, the four methods tested gave comparable results for the antioxidant capacity measured in oak wood extracts, the ORAC method gave results with some differences from the other methods. Non-toasted oak wood samples displayed more antioxidant power than toasted ones due to differences in the polyphenol compositon. A correlation analysis revealed that ellagitannins were the compounds mainly responsible for the antioxidant capacity of oak wood. Some phenolic acids, mainly gallic acid, also showed a significant correlation with antioxidant capacity.
Resumo:
Objective. Therapeutic alliance, modality, and ability to engage with the process of therapy have been the main focus of research into what makes psychotherapy successful. Individuals with complex trauma histories or schizophrenia are suggested to be more difficult to engage and may be less likely to benefit from therapy. This study aimed to track the in-session ‘process’ of working alliance and emotional processing of trauma memories for individuals with schizophrenia. Design. The study utilized session recordings from the treatment arm of an open randomized clinical trial investigating trauma-focused cognitive behavioural therapy (TF-CBT) for individuals with schizophrenia (N = 26). Method. Observer measures of working alliance, emotional processing, and affect arousal were rated at early and late phases of therapy. Correlation analysis was undertaken for process measures. Temporal analysis of expressed emotions was also reported. Results. Working alliance was established and maintained throughout the therapy; however, agreement on goals reduced at the late phase. The participants appeared to be able to engage in emotional processing, but not to the required level for successful cognitive restructuring. Conclusion. This study undertook novel exploration of process variables not usually explored in CBT. It is also the first study of process for TF-CBT with individuals with schizophrenia. This complex clinical sample showed no difficulty in engagement; however, they may not be able to fully undertake the cognitive–emotional demands of this type of therapy. Clinical and research implications and potential limitations of these methods are considered.