962 resultados para gene locus
Resumo:
Background: The genome-wide association study era has made great progress in identifying susceptibility genes and genetic loci for rheumatoid arthritis (RA) in populations of White European ancestry. However, few studies have tried to dissect disease aetiopathogenesis in other ethnic populations. Objective: To investigate these associations in the Han Chinese population. Methods: Haplotypes from the HapMap database Chinese population were used to select tag-single-nucleotide polymorphisms (SNPs) (r2 =0.8) across 19 distinct RA genomic regions. A two phase case-control association study was performed, with 169 SNPs genotyped in phase I (n=571 cases, n=880 controls), and 64 SNPs achieving p<0.2 in the first phase being genotyped in phase II (n=464 cases, n=822 controls). Association statistics were calculated using permutation tests both unadjusted and adjusted for the number of markers studied. Results: Robust association was detected for MMEL1 and CTLA4 , and modest association was identified for another six loci: PADI4 , STAT4 , PRDM1 , CDK6 , TRAF1-C5 and KIF5A-PIP4K2C. All three markers genotyped in MMEL1 demonstrated association, with peak signal for rs3890745 (p=2.6×10 -5unadjusted, p=0.003 adjusted, OR=0.79). For CTLA4 , significance was detected for three of five variants showing association, with peak association for marker rs12992492 (p=4.3×10-5 unadjusted, p=0.0021 adjusted, OR=0.77). Lack of association of common variants in PTPN22 with RA in Han Chinese was confirmed. Conclusion: This study identifies MMEL1 and CTLA4 as RA susceptibility genes, provides suggestive evidence of association for a further six loci in the Han Chinese population and confirms lack of PTPN22 association in Asian populations. It also confirms the value of multiethnic population studies to help dissect disease aetiopathogenesis.
Resumo:
Objectives: Recent association studies by the Australo-Anglo-American Spondyloarthritis Consortium (TASC) in Caucasian European populations from Australia, North America and the UK have identified a number of genes as being associated with ankylosing spondylitis (AS). A candidate gene study in a Han Chinese population was performed based on these findings to identify associated genes in this population. Methods: A case-control study was performed in a Han Chinese population of patients with AS (n=775) and controls (n=1587) from Shanghai and Nanjing. All patients met the modified New York criteria for AS. The cases and controls were genotyped for 115 single nucleotide polymorphisms (SNPs) tagging IL23R, ERAP1, STAT3, JAK2, TNFRSF1A and TRADD, as well as other confirmation SNPs from the TASC study, using the Sequenom iPlex and the ABI OpenArray platforms. Statistical analysis of genotyped SNPs was performed using the Cochran - Armitage test for trend and meta-analysis was performed using METAL. SNPs in AS-associated genes in this study were then imputed using MaCH, and association with AS tested by logistic regression. Results: SNPs in TNFRSF1A (rs4149577, p=8.2×10-4), STAT3 (rs2293152, p=0.0015; rs1053005, p=0.017) and ERAP1 (rs27038, p=0.0091; rs27037, p=0.0092) were significantly associated with AS in Han Chinese. Association was also observed between AS and the intergenic region 2p15 (rs10865331, p=0.023). The lack of association between AS and IL23R in Han Chinese was confirmed (all SNPs p>0.1). Conclusions: The study results demonstrate for the first time that genetic polymorphisms in STAT3, TNFRSF1A and 2p15 are associated with AS in Han Chinese, suggesting common pathogenic mechanisms for the disease in Chinese and Caucasian European populations. Furthermore, previous findings demonstrating that ERAP1, but not IL23R, is associated with AS in Chinese patients were confirmed.
Resumo:
Objectives: To investigate the association of the FcγRIIIA gene with rheumatoid orthritis (RA) in two genetically distinct groups: a white group from the United Kingdom and a northern Indian group. Methods: The distributions of the two alleles of the FcγRIIIA F158V polymorphism were determined in 398 white patients from the United Kingdom and 63 Indian patients with RA and compared with those from 289 United Kingdom and 93 Indian healthy controls, respectively. Results: Among the Indian patients, the frequency of the rare 158V allele and the proportion of 158VV homozygotes were reduced (relative risk (RR)=0.3, 95% confidence interval (95% CI) 0.1 to 1.1, p<0.06), reaching statistical significance for carrying the 158VV phenotype relative to 158FV or FF (RR=0.2, 95% CI 0.05-0.9, p<0.02). Conversely, no significant deviation in allelic frequencies was noted between the patients and controls from the United Kingdom. Conclusions: The 158VV phenotype showed a weak protective effect against developing RA in the Indian group. However, this sample was small (resulting in a low power for statistical analysis) and no independent confirmation was found in the larger white United Kingdom group. Thus the FcγRIIIA locus is unlikely to be of major importance in causing RA.
Resumo:
Objective. To identify genomic regions linked with determinants of age at symptom onset, disease activity, and functional impairment in ankylosing spondylitis (AS). Methods. A whole genome linkage scan was performed in 188 affected sibling pair families with 454 affected individuals. Traits assessed were age at symptom onset, disease activity assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and functional impairment assessed by the Bath Ankylosing Spondylitis Functional Index (BASFI). Parametric and nonparametric quantitative linkage analysis was performed using parameters defined in a previous segregation study. Results. Heritabilities of the traits studied in this data set were as follows: BASDAI 0.49 (P = 0.0001, 95% confidence interval [95% CI] 0.23-0.75), BASFI 0.76 (P = 10-7, 95% CI 0.49-1.0), and age at symptom onset 0.33 (P = 0.005, 95% CI 0.04-0.62). No linkage was observed between the major histocompatibility complex (MHC) and any of the traits studied (logarithm of odds [LOD] score <1.0). "Significant" linkage (LOD score 4.0) was observed between a region on chromosome 18p and the BASDAI. Age at symptom onset showed "suggestive" linkage to chromosome 11p (LOD score 3.3). Maximum linkage with the BASFI was seen at chromosome 2q (LOD score 2.9). Conclusion. In contrast to the genetic determinants of susceptibility to AS, clinical manifestations of the disease measured by the BASDAI, BASFI, and age at symptom onset are largely determined by a small number of genes not encoded within the MHC.
Resumo:
Objective. To localize the regions containing genes that determine susceptibility to ankylosing spondylitis (AS). Methods. One hundred five white British families with 121 affected sibling pairs with AS were recruited, largely from the Royal National Hospital for Rheumatic Diseases AS database. A genome-wide linkage screen was undertaken using 254 highly polymorphic microsatellite markers from the Medical Research Council (UK) (MRC) set. The major histocompatibility complex (MHC) region was studied more intensively using 5 microsatellites lying within the HLA class III region and HLA-DRB1 typing. The Analyze package was used for 2-point analysis, and GeneHunter for multipoint analysis. Results. When only the MRC set was considered, 11 markers in 7 regions achieved a P value of ≤0.01. The maximum logarithm of odds score obtained was 3.8 (P = 1.4 x 10-5) using marker D6S273, which lies in the HLA class III region. A further marker used in mapping of the MHC class III region achieved a LOD score of 8.1 (P = 1 x 10-9). Nine of 118 affected sibling pairs (7.6%) did not share parental haplotypes identical by descent across the MHC, suggesting that only 31% of the susceptibility to AS is coded by genes linked to the MHC. The maximum non-MHC LOD score obtained was 2.6 (P = 0.0003) for marker D16S422. Conclusion. The results of this study confirm the strong linkage of the MHC with AS, and provide suggestive evidence regarding the presence and location of non-MHC genes influencing susceptibility to the disease.
Resumo:
Objective The results of a recent genome-wide association study have shown that ERAP1 and IL23R are associated with ankylosing spondylitis (AS) in Caucasian populations from North America and the UK. Based on these findings, we undertook the current study to investigate whether single-nucleotide polymorphisms (SNPs) covering the genes ERAP1 and IL23R are associated with AS in a Han Chinese population. Methods A case-control study was performed in Han Chinese patients with AS (n = 527) and controls (n = 945) from Shanghai and Nanjing. All patients met the modified New York criteria for AS. The Sequenom iPlex platform was used to genotype cases and controls for 21 tag SNPs covering IL23R and 38 tag SNPs covering ERAP1. Statistical analysis was performed using the Cochran-Armitage test for trend. Results Multiple SNPs in ERAP1 were significantly associated with AS (for rs27980, P = 0.0048; for rs7711564, P = 0.0081). However, no association was observed between IL23R and AS (for all SNPs, P > 0.1). The nonsynonymous SNP in IL23R, rs11209026, widely thought to be the primary AS-associated SNP in IL23R in Europeans, was found not to be polymorphic in Chinese. Conclusion Our results demonstrate that genetic polymorphisms in ERAP1 are associated with AS in Han Chinese, suggesting a common pathogenic mechanism for the disease in Chinese and Caucasian populations, and that IL23R is not associated with AS in Chinese, indicating a difference in the mechanism of disease pathogenesis between Chinese and Caucasian populations. This may result from the fact that rs11209026, the nonsynonymous SNP in IL23R, is not polymorphic in Chinese patients, providing further evidence that rs11209026 is the key polymorphism associated with AS (and likely inflammatory bowel disease and psoriasis) in this gene.
Resumo:
Objective. To examine whether the T cell receptor (TCR) A or TCRB loci exhibit linkage with disease in multiplex rheumatoid arthritis (RA) families. Methods. A linkage study was performed in 184 RA families from the UK Arthritis and Rheumatism Council Repository, each containing at least 1 affected sibpair. The microsatellites D14S50, TCRA, and D14S64 spanning the TCRA locus and D7S509, Vβ6.7, and D7S688 spanning the TCRB locus were used as DNA markers. The subjects were genotyped using a semiautomated polymerase chain reaction-based method. Two-point and multipoint linkage analyses were performed. Results. Nonparametric single-marker likelihood odds (LOD) scores were 0.49 (P = 0.07) for D14S50, 0.65 (P = 0.04) for TCRA, 0.07 (P = 0.29) for D14S64, 0.01 (P = 0.43) for D7S509, 0.0 (P = 0.50) for Vβ6.7, and 0.0 (P = 0.50) for D7S688. By multipoint analysis, there was no evidence of linkage at TCRB (LOD score 0), and the maximum LOD score at the TCRA locus was 0.37 (at D14S50). The presence of a susceptibility locus (LOD score < -2.0) was excluded, with lambda ≤ 1.8 at TCRA and ≤1.4 at TCRB. Conclusion. These linkage studies provide no significant evidence of a major germline-encoded TCRA or TCRB component of susceptibility to RA.
Resumo:
Objective. Ankylosing spondylitis (AS) affects 0.25-1.0% of the population, and its etiology is incompletely understood. Susceptibility to this highly familial disease (λ(s) = 58) is primarily genetically determined. There is a significant sex bias in AS, and there are differences in recurrence risk to the offspring of affected mothers and fathers, suggesting that there may be an X-linked recessive effect. We undertook an X- chromosome linkage study to determine any contribution of the X-chromosome to AS susceptibility. Methods. A linkage study of the X-chromosome using 234 affected sibling pairs was performed to investigate this hypothesis. Results. No linkage of the X-chromosome with susceptibility to AS was found. Model- free multipoint linkage analysis strongly excluded any significant genetic contribution (λ ≥1.5) to AS susceptibility encoded on the X-chromosome (logarithm of odds [LOD] <-2.0). Smaller genetic effects (A ≥1.3) were also found to be unlikely (LOD <-1.0). Conclusion. The sex bias in AS is not explained by X-chromosome-encoded genetic effects. The disease model best explaining the sex bias in occurrence and transmission of AS is a polygenic model with a higher susceptibility threshold in females.
Resumo:
Objective. To undertake a systematic wholegenome screen to identify regions exhibiting genetic linkage to rheumatoid arthritis (RA). Methods. Two hundred fifty-two RA-affected sibling pairs from 182 UK families were genotyped using 365 highly informative microsatellite markers. Microsatellite genotyping was performed using fluorescent polymerase chain reaction primers and semiautomated DNA sequencing technology. Linkage analysis was undertaken using MAPMAKER/SIBS for single-point and multipoint analysis. Results. Significant linkage (maximum logarithm of odds score 4.7 [P = 0.000003] at marker D6S276, 1 cM from HLA-DRB1) was identified around the major histocompatibility complex (MHC) region on chromosome 6. Suggestive linkage (P < 7.4 × 10-4) was identified on chromosome 6q by single- and multipoint analysis. Ten other sites of nominal linkage (P < 0.05) were identified on chromosomes 3p, 4q, 7p, 2 regions of 10q, 2 regions of 14q, 16p, 21q, and Xq by single-point analysis and on 3 sites (1q, 14q, and 14q) by multipoint analysis. Conclusion. Linkage to the MHC region was confirmed. Eleven non-HLA regions demonstrated evidence of suggestive or nominal linkage, but none reached the genome-wide threshold for significant linkage (P = 2.2 × 10-5). Results of previous genome screens have suggested that 6 of these regions may be involved in RA susceptibility.
Resumo:
Objective. We have previously identified a single-nucleotide polymorphism (SNP) haplotype involving the lymphotoxin α (LTA) and tumor necrosis factor (TNF) loci (termed haplotype LTA-TNF2) on chromosome 6 that shows differential association with rheumatoid arthritis (RA) on HLA-DRB1*0404 and *0401 haplotypes, suggesting the presence of additional non-HLA-DRB1 RA susceptibility genes on these haplotypes. To refine this association, we performed a case-control association study using both SNPs and microsatellite markers in haplotypes matched either for HLA-DRB1*0404 or for HLA-DRB1*0401. Methods. Fourteen SNPs lying between HLA-DRB1 and LTA were genotyped in 87 DRB1*04-positive families. High-density microsatellite typing was performed using 24 markers spanning 2,500 kb centered around the TNF gene in 305 DRB1*0401 or *0404 cases and 400 DRB1*0401 or *0404 controls. Single-marker, 2-marker, and 3-marker minihaplotypes were constructed and their frequencies compared between the DRB1*0401 and DRB1*0404 matched case and control haplotypes. Results. Marked preservation of major histocompatibility complex haplotypes was seen, with chromosomes carrying LTA-TNF2 and either DRB1*0401 or DRB1*0404 both carrying an identical SNP haplotype across the 1-Mb region between TNF and HLA-DRB1. Using microsatellite markers, we observed two 3-marker minihaplotypes that were significantly overrepresented in the DRB1*0404 case haplotypes (P = 0.00024 and P = 0.00097). Conclusion. The presence of a single extended SNP haplotype between LTA-TNF2 and both DRB1*0401 and DRB1*0404 is evidence against this region harboring the genetic effects in linkage disequillbrium with LTA-TNF2. Two RA-associated haplotypes on the background of DRB1*0404 were identified in a 126-kb region surrounding and centromeric to the TNF locus.
Resumo:
We thank Ploski and colleagues for their interest in our study. The explanation for the difference in our findings is a typographic error in Table 2 of our article, whereby the alleles for marker TNF ⫺1031 were labeled incorrectly...
Resumo:
Objective To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans. Methods A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations. Results Three non-major histocompatibility complex (non-MHC) loci were identified at the genome-wide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These included 2 novel variants, rs12617656, located in an intron of DPP4 (odds ratio [OR] 1.56, P = 1.6 × 10 -21), and rs12379034, located in the coding region of CDK5RAP2 (OR 1.49, P = 1.1 × 10-16), as well as a variant at the known CCR6 locus, rs1854853 (OR 0.71, P = 6.5 × 10-15). The analysis of ACPA-positive patients versus ACPA-negative patients revealed that rs12617656 at the DPP4 locus showed a strong interaction effect with ACPAs (P = 5.3 × 10-18), and such an interaction was also observed for rs7748270 at the MHC locus (P = 5.9 × 10-8). The transpopulation meta-analysis showed genome-wide overlap and enrichment in association signals across the 2 populations, as confirmed by prediction analysis. Conclusion This study has expanded the list of alleles that confer risk of RA, provided new insight into the pathogenesis of RA, and added empirical evidence to the emerging polygenic nature of complex trait variation driven by common genetic variants. Copyright © 2014 by the American College of Rheumatology.
Resumo:
Objective Several genetic risk variants for ankylosing spondylitis (AS) have been identified in genome-wide association studies. Our objective was to examine whether familial AS cases have a higher genetic load of these susceptibility variants. Methods Overall, 502 AS patients were examined, consisting of 312 patients who had first-degree relatives (FDRs) with AS (familial) and 190 patients who had no FDRs with AS or spondylarthritis (sporadic). All patients and affected FDRs fulfilled the modified New York criteria for AS. The patients were recruited from 2 US cohorts (the North American Spondylitis Consortium and the Prospective Study of Outcomes in Ankylosing Spondylitis) and from the UK-Oxford cohort. The frequencies of AS susceptibility loci in IL-23R, IL1R2, ANTXR2, ERAP-1, 2 intergenic regions on chromosomes 2p15 and 21q22, and HLA-B27 status as determined by the tag single-nucleotide polymorphism (SNP) rs4349859 were compared between familial and sporadic cases of AS. Association between SNPs and multiplex status was assessed by logistic regression controlling for sibship size. Results HLA-B27 was significantly more prevalent in familial than sporadic cases of AS (odds ratio 4.44 [95% confidence interval 2.06, 9.55], P = 0.0001). Furthermore, the AS risk allele at chromosome 21q22 intergenic region showed a trend toward higher frequency in the multiplex cases (P = 0.08). The frequency of the other AS risk variants did not differ significantly between familial and sporadic cases, either individually or combined. Conclusion HLA-B27 is more prevalent in familial than sporadic cases of AS, demonstrating higher familial aggregation of AS in patients with HLA-B27 positivity. The frequency of the recently described non-major histocompatibility complex susceptibility loci is not markedly different between the sporadic and familial cases of AS.
Resumo:
Genomewide association studies (GWAS) have proven a powerful hypothesis-free method to identify common disease-associated variants. Even quite large GWAS, however, have only at best identified moderate proportions of the genetic variants contributing to disease heritability. To provide cost-effective genotyping of common and rare variants to map the remaining heritability and to fine-map established loci, the Immunochip Consortium has developed a 200,000 SNP chip that has been produced in very large numbers for a fraction of the cost of GWAS chips. This chip provides a powerful tool for immunogenetics gene mapping.
Resumo:
Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.