1000 resultados para gauge theory
Resumo:
In the context of a gauge theory for the translation group, we have obtained, for a spinless particle, a gravitational analogue of the Lorentz force. Then, we have shown that this force equation can be rewritten in terms of magnitudes related to either the teleparallel or the Riemannian structures induced in spacetime by the presence of the gravitational field. In the first case, it gives a force equation, with torsion playing the role of force. In the second, it gives the usual geodesic equation of general relativity. The main conclusion is that scalar matter is able to feel any one of the above spacetime geometries, the teleparallel and the metric ones. Furthermore, both descriptions are found to be completely equivalent in the sense that they give the same physical trajectory for a spinless particle in a gravitational field.
Resumo:
We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained systems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac brackets and the correspondent Maxwell electromagnetic theory limit. ©1999 The American Physical Society.
Resumo:
In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the Møller's canonical energy-momentum density of the gravitational field.
Resumo:
We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED 3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.
Resumo:
We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.
Resumo:
We estimate the dissipation coefficient Γ that appears in Ginzburg-Landau-Langevin equations that describe phenomenologically the deconfinement transition in QCD. This is done through the implementation of Glauber dynamics of pure SU(3) lattice gauge theory. The coefficient Γ is extracted from the short-time exponential growth of the equal time correlation function of the order parameter. Although the absolute determination of Γ is ambiguous due to the difficulties in relating real time and Monte Carlo time, its relative temperature dependence can be obtained with much less arbitrariness. © 2007 American Institute of Physics.
Resumo:
We investigate the dissipative real-time evolution of the order parameter for the deconfining transition in the pure SU(2) gauge theory. The approach to equilibrium after a quench to temperatures well above the critical one is described by a Langevin equation. To fix completely the Markovian Langevin dynamics we choose the dissipation coefficient, that is a function of the temperature, guided by preliminary Monte Carlo simulations for various temperatures. Assuming a relationship between Monte Carlo time and real time, we estimate the delay in thermalization brought about by dissipation and noise. © 2007 The American Physical Society.
Resumo:
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.
Resumo:
Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a non-Abelian gauge theory with dynamically generated gauge boson masses and a specific chiral symmetry breaking dynamics motivated by confinement. The scalar mass is computed with the use of the Bethe-Salpeter equation and its normalization condition as a function of the SU(N) group and the respective fermionic representation. If the fermions that form the composite state are in the fundamental representation of the SU(N) group, we can generate such a light boson only for one specific number of fermions for each group. We address the uncertainties underlying this result, when considering the strong dynamics in isolation. © 2013 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)