958 resultados para gas phase reactions
Resumo:
The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d, p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+ G(d, p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol-1 lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond.
Resumo:
The structures of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid have been determined by gas-phase electron diffraction using results from quantum chemical calculations to inform the choice of restraints applied to some of the structural parameters. The results from the study presented here demonstrate that resonance hybrids are not as helpful in rationalizing the structures of 2-, 3-, and 4-hydroxybenzoic acids as are models based upon electrostatic effects.
Resumo:
Time resolved studies of germylene, GeH2, generated by laser flash photolysis of 3,4-dimethylgermacyclopentene-3, have been carried out to obtain rate constants for its bimolecular reaction with acetylene, C2H2. The reaction was studied in the gas-phase over the pressure range 1-100 Tort, with SF6 as bath gas, at 5 temperatures in the range 297-553 K. The reaction showed a very slight pressure dependence at higher temperatures. The high pressure rate constants (obtained by extrapolation at the three higher temperatures) gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) (-10.94 +/- 0.05) + (6.10 +/- 0.36 kJ mol(-1))/RTln10. These Arrhenius parameters are consistent with a fast reaction occurring at approximately 30% of the collision rate at 298 K. Quantum chemical calculations (both DFT and ab initio G2//B3LYP and G2//QCISD) of the GeC2H4 potential energy surface (PES), show that GeH2 + C2H2 react initially to form germirene which can isomerise to vinylgermylene with a relatively low barrier. RRKM modelling, based on a loose association transition state, but assuming vinylgermylene is the end product (used in combination with a weak collisional deactivation model) predicts a strong pressure dependence using the calculated energies, in conflict with the experimental evidence. The detailed GeC2H4 PES shows considerable complexity with ten other accessible stable minima (B3LYP level), the three most stable of which are all germylenes. Routes through this complex surface were examined in detail. The only product combination which appears capable of satisfying the (P-3) + C2H4.C2H4 was confirmed as a product by GC observed lack of a strong pressure dependence is Ge(P-3) + C2H4. C2H4 was confirmed as a product by GC analysis. Although the formation of these products are shown to be possible by singlet-triplet curve crossing during dissociation of 1-germiranylidene (1-germacyclopropylidene), it seems more likely (on thermochernical grounds) that the triplet biradical, (GeCH2CH2.)-Ge-., is the immediate product precursor. Comparisons are made with the reaction of SiH2 with C2H2.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.
Resumo:
The photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b,respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane. Flash photolysis of 4a in the gas phase affords a transient absorbing in the 450-520nm range that is assigned to SnMe2 by comparison of its spectrum and reactivity to those previously reported from other precursors. Flash photolysis of 4b in hexane solution affords results consistent with the initial formation of SnMe2 (lambda(max) approximate to 500 nm), which decays over similar to 10 mu s to form tetramethyldistannene (5b; lambda(max) approximate to 470 nm). The distannene decays over the next ca. 50 mu s to form at least two other longer-lived species, which are assigned to higher SnMe2 oligomers. Time-dependent DFT calculations support the spectral assignments for SnMe2 and Sn2Me4, and calculations examining the variation in bond dissociation energy with substituent (H, Me, and Ph) in disilenes, digermenes, and distannenes rule out the possibility that dimerization of SnMe2 proceeds reversibly. Addition of methanol leads to reversible reaction with SnMe2 to form a transient absorbing at lambda(max) approximate to 360 nm, which is assigned to the Lewis acid-base complex between SnMe2 and the alcohol.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied independently as a function of H2O (or D2O) and SF6 (bath gas) pressures. At a fixed pressure of SF6 (5 Torr), [SiH2] decay constants, k(obs), showed a quadratic dependence on [H2O] or [D2O]. At a fixed pressure of H2O or D2O, k(obs) Values were strongly dependent on [SF6]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H2Si...OH2 (or H2Si...OD2). This complex can then either be stabilized by SF6 or it reacts with a further molecule of H2O (or D2O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF6) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H2Si...(OH2)(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.
Resumo:
Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 degrees C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND3 has been used to aid identification of the products. Adipic acid likewise reacts with NH3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using (NO2)-N-15 has been used to confirm the identity of the bands arising from the coordinated NO2 group. The products formed when single crystals of hydantoin are reacted with NO2 gas under similar conditions depend on the temperature of the reaction. At 20 degrees C, a nitrated product is formed, but at 65 degrees C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Single crystals of trans-cinnamic acid and of a range of derivatives of this compound containing halogen substituents on the aromatic ring have been reacted with 165 Torr pressure of bromine vapour in a sealed desiccator at 20 degrees C for 1 week. Infrared and Raman microspectroscopic examination of the crystals shows that bromination of the aliphatic double bond, but not of the aromatic ring, has occurred. It is demonstrated also that the reaction is truly gas-solid in nature. A time-dependent study of these reactions shows that they do not follow a smooth diffusion-controlled pathway. Rather the reactions appear to be inhomogeneous and to occur at defects within the crystal. The reaction products are seen to flake from the surface of the crystal. It is shown, therefore, that these are not single crystal to single crystal transitions, as have been observed previously for the photodimerisation of trans-cinnamic acid and several of its derivatives. It is shown that there are no by-products of the reaction and that finely ground samples react to form the same products as single crystals.
Resumo:
UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of formation of pinonic and norpinonic acids from alpha-pinene ozonolysis has been investigated by studying the products of the ozonolysis of an enone derived from alpha-pinene using gas chromatography coupled to mass spectrometry.
Resumo:
The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3- acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.
Resumo:
Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C-7-diacids and three isomers of C-7-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e. g. the branching ratio between the two hydroperoxide channels of the C-7-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C-7-CI were also obtained from measurements of the C-7 primary carbonyl product.
Resumo:
This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chromatography coupled to mass spectrometry after derivation. Product yields were determined as a function of different OH radical scavengers and relative humidities to give mechanistic information about their routes of formation. Furthermore, an enone and an enal derived from 3-carene were ozonised in order to probe the early mechanistic steps in the reaction and, in particular, which of the two initially formed Criegee intermediates gives rise to which products. Branching ratios for the formation of the two Criegee Intermediates are determined. Similarities and differences in product formation from 3-carene and alpha-pinene ozonolysis are discussed and possible mechanisms-supported by experimental evidence-are developed for all acids investigated.
Resumo:
Gas-phase ozonolysis of alpha-pinene was studied in static chamber experiments under 'OH-free' conditions. A range of multifunctional products-in particular low-volatility carboxylic acids-were identified in the condensed phase using gas chromatography coupled to mass spectrometry after derivatisation. The dependence of product yields on reaction conditions (humidity, choice of OH radical scavengers, added Criegee intermediate scavengers, NO2 etc.) was investigated to probe the mechanisms of formation of these products; additional information was obtained by studying the ozonolysis of an enal and an enone derived from alpha-pinene. On the basis of experimental findings, previously suggested mechanisms were evaluated and detailed gas-phase mechanisms were developed to explain the observed product formation. Atmospheric implications of this work are discussed.
Resumo:
The molecular structures of NbOBr3, NbSCl3, and NbSBr3 have been determined by gas-phase electron diffraction (GED) at nozzle-tip temperatures of 250 degreesC, taking into account the possible presence of NbOCl3 as a contaminant in the NbSCl3 sample and NbOBr3 in the NbSBr3 sample. The experimental data are consistent with trigonal-pyramidal molecules having C-3v symmetry. Infrared spectra of molecules trapped in argon or nitrogen matrices were recorded and exhibit the characteristic fundamental stretching modes for C-3v species. Well resolved isotopic fine structure (Cl-35 and Cl-37) was observed for NbSCl3, and for NbOCl3 which occurred as an impurity in the NbSCl3 spectra. Quantum mechanical calculations of the structures and vibrational frequencies of the four YNbX3 molecules (Y = O, S; X = Cl, Br) were carried out at several levels of theory, most importantly B3LYP DFT with either the Stuttgart RSC ECP or Hay-Wadt (n + 1) ECP VDZ basis set for Nb and the 6-311 G* basis set for the nonmetal atoms. Theoretical values for the bond lengths are 0.01-0.04 Angstrom longer than the experimental ones of type r(a), in accord with general experience, but the bond angles with theoretical minus experimental differences of only 1.0-1.5degrees are notably accurate. Symmetrized force fields were also calculated. The experimental bond lengths (r(g)/Angstrom) and angles (angle(alpha)/deg) with estimated 2sigma uncertainties from GED are as follows. NbOBr3: r(Nb=O) = 1.694(7), r(Nb-Br) = 2.429(2), angle(O=Nb-Br) = 107.3(5), angle(Br-Nb-Br) = 111.5(5). NbSBr3: r(Nb=S) = 2.134(10), r(Nb-Br) = 2.408(4), angle(S=Nb-Br) = 106.6(7), angle(Br-Nb-Br) = 112.2(6). NbSCl3: Nb=S) = 2.120(10), r(Nb-Cl) = 2.271(6), angle(S=Nb-Cl) = 107.8(12), angle(Cl-Nb-Cl) = 111.1(11).