988 resultados para gamma-gamma-t coincidence
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
We report on the dielectric proper-ties of bismuth aluminate and gallate with Bi:AI(Ga) ratio of 1: 1 and 12:1 prepared at high temperature and ambient pressure. These compounds crystallize in a noncentrosymmetric body-centered cubic structure (space group 123) with a similar to 10.18 angstrom rather than in the perovskite structure.This cubic phase is related to the gamma-Bi2O3 structure which has the actual chemical formula Bi-24(3+) (Bi3+Bi5+)O40-delta. In the aluminates and gallates studied by us, the Al and Ga ions are distributed over the 24f and 2a sites. These compounds exibit ferroclectric hysteresis at room temperature with a weak polarization. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Study of the alkaline hydrolysis of a number of variously substituted normal o-benzoylbenzoic esters has been reported. Although carbonyl-assisted hydrolysis is the general rule, in compounds containing strongly electron-donating groups, the ester function is directly attacked. The cause of rate enhancement in carbonyl-assisted hydrolysis and in greater detail the case of 6-substituted derivatives are discussed. It is shown that the carbonyl-assisted hydrolyses are characterized by decreased sensitivity to leaving-group structure. The implications of this result are pointed out.
Resumo:
The design of folded structures in peptides containing the higher homologues of alpha-amino acid residues requires the restriction of the range of local conformational choices In alpha-amino acids stereochemically constrained residues like alpha,alpha-dialkylated residue, aminoisobutyric acid (Aib), and D-Proline ((D)Pro) have proved extremely useful in the design of helices and hairpins in short peptides Extending this approach, backbone substitution and cyclization are anticipated to bc useful in generating conformationally constrained beta- and gamma-residues This brief review provides a survey of work on hybrid peptide sequences concerning the conformationally constrained gamma-amino acid residue 1-aminomethyl cyclohexane acetic acid, gabapentin (Gpn) This achiral, beta,beta-disubstituted, gamma-residue strongly favors gauche-gauche conformations about the C-alpha-C-beta (0(2)) and C-alpha-C-gamma (0(1)) bonds, facilitating local folding The Gpn residue can adopt both C-7 (NH1 -> CO1) and C-9 (CO1 (I)<- NH1+I) hydrogen bonds which are analogous to the C-5 and C7 (gamma-turn) conformations at alpha-residues In conjunction with adjacent residues, Gpn may be used in ay and gamma alpha segments to generate C-12 hydrogen bonded conformations which may be considered as expanded analogs of conventional beta-turns The structural characterization of C-12 helices, C-12/C-10 helices with mixed hydrogen bond directionalities and beta-hairpins incorporating Gpn residues at the turn segment is illustrated (C) 2010 Wiley Periodicals, Inc Biopolymers (Pept Sci) 94 733-741 2010
Resumo:
A structural investigation of cubic oxides (space group I23) of the formula Bi(26-x)M(x)O(40-delta) (M = Ti, Mn, Fe, Co, Ni and Pb) related to the Y-Bi2O3 phase has been carried out by the Rietveld profile analysis of high-resolution X-ray powder diffraction data in order to establish the cation distributions. Compositional dependence of the cation distribution has been examined in the case of Bi26-xCoxO40-delta (1 < x < 16). The study reveals that in Bi(26-X)M(X)O(40-delta) with M = Ti, Mn, Fe, Co or Pb, the M cations tend to occupy tetrahedral (2a) sites when x < 2 while the octahedral (24f) sites are shared by the excess Co or Ni cations with Bi atoms when x > 2. Also experimental magnetic moments of Mn, Co and Ni derivatives have been used to establish the valence state and distribution of these cations.
Resumo:
The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.
Resumo:
In-situ EXAFS investigations have been carried out on Ni/gamma-Al2O3 catalysts with different metal loadings and prepared from different precursors. When the calcined precursors are reduced in hydrogen, the proportion of nickel metal formed varies with the nature of the precursor employed; NiAl2O4 is the unreduced product. The metal loading does not have any significant effect on the proportion of metal formed except in the case of the catalyst prepared by wet-impregnation, where appreciable metal is obtained only when the loading is greater than 10wt%. Ni/AlPO4 catalysts do not show the formation of NiAl2O4 and reduction to metal is complate, unlike with the Ni/gamma-Al2O3 catalysts which show only partial reduction to metal.
Resumo:
Intramolecular gamma-hydrogen abstraction reactions were examined in pentane-2-one and 2-methyl-1-pentene in their lowest triplet states using the AM1 semi-empirical molecular orbital method with the complete geometry optimization in the unrestricted Hartree-Fock frame. The results reveal that the oxygen atom of the carbonyl group and the end carbon atom of the olefinic bond acquire high free valence and spin density indices in their respective lowest triplet states, leading to abstraction of hydrogen from the gamma-position relative to the carbonyl and olefinic bonds. The theoretical energy profiles fit with a polynomial and the probability of tunneling of hydrogen was estimated by the WKB (Wentzel, Kramer and Brillouin) method. The results, after thermal averaging of the rate constants, reveal that tunneling of hydrogen is significant at room temperature.