891 resultados para functional electrical stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate adaptive changes in bone and muscle parameters in the paralysed limbs after detraining or reduced functional electrical stimulation (FES) induced cycling following high-volume FES-cycling in chronic spinal cord injury. SUBJECTS: Five subjects with motor-sensory complete spinal cord injury (age 38.6 years, lesion duration 11.4 years) were included. Four subjects stopped FES-cycling completely after the training phase whereas one continued reduced FES-cycling (2-3 times/week, for 30 min). METHODS: Bone and muscle parameters were assessed in the legs using peripheral quantitative computed tomography at 6 and 12 months after cessation of high-volume FES-cycling. RESULTS: Gains achieved in the distal femur by high-volume FES-cycling were partly maintained at one year of detraining: 73.0% in trabecular bone mineral density, 63.8% in total bone mineral density, 59.4% in bone mineral content and 22.1% in muscle cross-sectional area in the thigh. The subject who continued reduced FES-cycling maintained 96.2% and 95.0% of the previous gain in total and trabecular bone mineral density, and 98.5% in muscle cross-sectional area. CONCLUSION: Bone and muscle benefits achieved by one year of high-volume FES-cycling are partly preserved after 12 months of detraining, whereas reduced cycling maintains bone and muscle mass gained. This suggests that high-volume FES-cycling has clinical relevance for at least one year after detraining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of developing a successful stroke rehabilitation methodology requires four key components: a good understanding of the pathophysiological mechanisms underlying this brain disease, clear neuroscientific hypotheses to guide therapy, adequate clinical assessments of its efficacy on multiple timescales, and a systematic approach to the application of modern technologies to assist in the everyday work of therapists. Achieving this goal requires collaboration between neuroscientists, technologists and clinicians to develop well-founded systems and clinical protocols that are able to provide quantitatively validated improvements in patient rehabilitation outcomes. In this article we present three new applications of complementary technologies developed in an interdisciplinary matrix for acute-phase upper limb stroke rehabilitation – functional electrical stimulation, arm robot-assisted therapy and virtual reality-based cognitive therapy. We also outline the neuroscientific basis of our approach, present our detailed clinical assessment protocol and provide preliminary results from patient testing of each of the three systems showing their viability for patient use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Brain computer interface (BCI) is a promising new technology with possible application in neurorehabilitation after spinal cord injury. Movement imagination or attempted movement-based BCI coupled with functional electrical stimulation (FES) enables the simultaneous activation of the motor cortices and the muscles they control. When using the BCI- coupled with FES (known as BCI-FES), the subject activates the motor cortex using attempted movement or movement imagination of a limb. The BCI system detects the motor cortex activation and activates the FES attached to the muscles of the limb the subject is attempting or imaging to move. In this way the afferent and the efferent pathways of the nervous system are simultaneously activated. This simultaneous activation encourages Hebbian type learning which could be beneficial in functional rehabilitation after spinal cord injury (SCI). The FES is already in use in several SCI rehabilitation units but there is currently not enough clinical evidence to support the use of BCI-FES for rehabilitation. Aims: The main aim of this thesis is to assess outcomes in sub-acute tetraplegic patients using BCI-FES for functional hand rehabilitation. In addition, the thesis explores different methods for assessing neurological rehabilitation especially after BCI-FES therapy. The thesis also investigated mental rotation as a possible rehabilitation method in SCI. Methods: Following investigation into applicable methods that can be used to implement rehabilitative BCI, a BCI based on attempted movement was built. Further, the BCI was used to build a BCI-FES system. The BCI-FES system was used to deliver therapy to seven sub-acute tetraplegic patients who were scheduled to receive the therapy over a total period of 20 working days. These seven patients are in a 'BCI-FES' group. Five more patients were also recruited and offered equivalent FES quantity without the BCI. These further five patients are in a 'FES-only' group. Neurological and functional measures were investigated and used to assess both patient groups before and after therapy. Results: The results of the two groups of patients were compared. The patients in the BCI-FES group had better improvements. These improvements were found with outcome measures assessing neurological changes. The neurological changes following the use of the BCI-FES showed that during movement attempt, the activation of the motor cortex areas of the SCI patients became closer to the activation found in healthy individuals. The intensity of the activation and its spatial localisation both improved suggesting desirable cortical reorganisation. Furthermore, the responses of the somatosensory cortex during sensory stimulation were of clear evidence of better improvement in patients who used the BCI-FES. Missing somatosensory evoked potential peaks returned more for the BCI-FES group while there was no overall change in the FES-only group. Although the BCI-FES group had better neurological improvement, they did not show better functional improvement than the FES-only group. This was attributed mainly to the short duration of the study where therapies were only delivered for 20 working days. Conclusions: The results obtained from this study have shown that BCI-FES may induce cortical changes in the desired direction at least faster than FES alone. The observation of better improvement in the patients who used the BCI-FES is a good result in neurorehabilitation and it shows the potential of thought-controlled FES as a neurorehabilitation tool. These results back other studies that have shown the potential of BCI-FES in rehabilitation following neurological injuries that lead to movement impairment. Although the results are promising, further studies are necessary given the small number of subjects in the current study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of a 12-week FES-ambulation program on locomotor function and quality of life after incomplete spinal cord injury. Six individuals with incomplete SCI participated in the study. Over-ground walking endurance (6MWT), speed (10MWT), independence (WISCI II) and body-weight support were assessed. Quality of life was assessed via the SF-36, WHOQOL-BREF, Perceived Stress Scale, Center of Epidemiological Studies for Depression scale, and task self-efficacy. Participants experienced significant improvements in walking endurance (223.6±141.5m to 297.3±164.5m; p=0.03), body-weight support (55.3±12.6% to 14.7±23.2%; p= 0.005) and four of the six participants showed improvements on the WISCI II scale (1-4 points). In addition, there was a significant reduction in reported bodily pain (6.5±1.2 to 5.0±1.7; p=0.04). Therefore, FES-ambulation is an effective means for enhancing over-ground locomotor function in individuals with incomplete SCI. It may also be an effective method for reducing pain in individuals with SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La stimulation électrique directe (SED), pour une heure, améliore la régénération de nerfs périphériques chez le rat après la réparation. Cliniquement, ceci augmenterait le temps opératoire, rehaussant les risques de complications périopératoires. Objectif: Cette étude examine si la stimulation électrique transcutanée (SETC) est aussi efficace à améliorer la régénération de nerfs périphériques que la stimulation électrique directe. Méthode: Le nerf sciatique droit de 28 souris a été axotomisé. Une réparation par microsuture est effectuée. Quatre groupes sont étudiés : (1) sham; (2) suture seulement; (3) suture et SED; (4) suture et SETC. La stimulation est appliquée pour 1 heure à 20 Hz. Les souris sont étudiées pour un total de 12 semaines. La récupération sciatique est évaluée aux semaines 0, 1, 2 et aux 2 semaines par la suite par analyse de démarche sur la poutre. Résultats: La cinématique post-récupération démontre un index fonctionnel sciatique et angle de décollement significativement améliorés pour les groupes SED et SETC aux semaines 8, 10 et 12. Conclusions: 12 semaines après l’axotomie du nerf sciatique, la récupération fonctionnelle est significativement améliorée avec la SED et la SETC. Donc, la SETC est aussi bénéfique pour la promotion de la régénération nerveuse et réinnervation musculaire fonctionnelle que la SED.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To validate a model for investigating the effects of analgesic drugs on mechanical, thermal and electrical stimulation testing. To investigate repeatability, sensitivity and specificity of nociceptive tests. Randomised experiment with 2 observers in 2 phases. Mechanical (M), thermal (TL) and electrical (E) stimuli were applied to the dorsal metacarpus (M-left and TL-right) and coronary band of the left thoracic limb (E) and a thoracic thermal stimulus (TT) was applied caudal to the withers in 8 horses (405 ± 43 kg). Stimuli intensities were increased until a clear avoidance response was detected without exceeding 20 N (M), 60°C (TL and TT) and 15 V (E). For each set of tests, 3 real stimuli and one sham stimulus were applied (32 per animal) using a blinded, randomised, crossover design repeated after 6 months. A distribution frequency and, for each stimulus, Chi-square and McNemar tests compared both the proportion of positive responses detected by 2 observers and the 2 study phases. The κ coefficients estimated interobserver agreement in determining endpoints. Sensitivity (384 tests) and specificity (128 tests) were evaluated for each nociceptive stimulus to assess the evaluators' accuracy in detecting real and sham stimuli. Nociceptive thresholds were 3.1 ± 2 N (M), 8.1 ± 3.8 V (E), 51.4 ± 5.5°C (TL) and 55.2 ± 5.3°C (TT). The level of agreement after all tests, M, E, TL and TT, was 90, 100, 84, 98 and 75%, respectively. Sensitivity was 89, 100, 89, 98 and 70% and specificity 92, 97, 88, 91 and 94%, respectively. The high interobserver agreement, sensitivity and specificity suggest that M, E and TL tests are valid for pain studies in horses and are suitable tools for investigating antinociceptive effects of analgesics in horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural control of the cardiovascular system is a complex process that involves many structures at different levels of nervous system. Several cortical areas are involved in the control of systemic blood pressure, such as the sensorimotor cortex, the medial prefrontal cortex and the insular cortex. Non-invasive brain stimulation techniques - repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) - induce sustained and prolonged functional changes of the human cerebral cortex. rTMS and tDCS has led to positive results in the treatment of some neurological and psychiatric disorders. Because experiments in animals show that cortical modulation can be an effective method to regulate the cardiovascular system, non-invasive brain stimulation might be a novel tool in the therapeutics of human arterial hypertension. We here review the experimental evidence that non-invasive brain stimulation can influence the autonomic nervous system and discuss the hypothesis that focal modulation of cortical excitability by rTMS or tDCS can influence sympathetic outflow and, eventually, blood pressure, thus providing a novel therapeutic tool for human arterial hypertension. (C) 2009 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The use of noninvasive cortical electrical stimulation with weak currents has significantly increased in basic and clinical human studies. Initial, preliminary studies with this technique have shown encouraging results; however, the safety and tolerability of this method of brain stimulation have not been sufficiently explored yet. The purpose of our study was to assess the effects of direct current (DC) and alternating current (AC) stimulation at different intensities in order to measure their effects on cognition, mood, and electroencephalogram. Methods: Eighty-two healthy, right-handed subjects received active and sham stimulation in a randomized order. We conducted 164 ninety-minute sessions of electrical stimulation in 4 different protocols to assess safety of (1) anodal DC of the dorsolateral prefrontal cortex (DLPFC); (2) cathodal DC of the DLPFC; (3) intermittent anodal DC of the DLPFC and; (4) AC on the zygomatic process. We used weak currents of 1 to 2 mA (for DC experiments) or 0.1 to 0.2 mA (for AC experiment). Results: We found no significant changes in electroencephalogram, cognition, mood, and pain between groups and a low prevalence of mild adverse effects (0.11% and 0.08% in the active and sham stimulation groups, respectively), mainly, sleepiness and mild headache that were equally distributed between groups. Conclusions: Here, we show no neurophysiological or behavioral signs that transcranial DC stimulation or AC stimulation with weak currents induce deleterious changes when comparing active and sham groups. This study provides therefore additional information for researchers and ethics committees, adding important results to the safety pool of studies assessing the effects of cortical stimulation using weak electrical currents. Further studies in patients with neuropsychiatric disorders are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus. Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI) scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure. Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES) was 4.16 +/- 1.02 mm (range: 2.56-5.27 mm). Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.