141 resultados para fullerene C60
Resumo:
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.
Resumo:
We characterize Paretian quasi-orders in the two-agent continuous case.
Resumo:
This Thesis discussed molecules suitable for photorefractive effect. Out of the molecules studied, only one system was used to make photorefractive polymers system. Other molecules, especially, the electro-optic polymer, Poly(3-methacrloyl-1-(4'-nitro-4-azo-1'-phenyl)phenylalanine-co- methyl methacrylate) can be subjected to more detailed studies to explore the possibilities of using them for electro-optic applications. Though not included in the thesis, the efficient photoconductor, Poly(6-tert-butyl-3- phenyl-3,4-dihydro-2H-1,3-benzoxazine) sensitized with C60, which was described in Chapter 3 showed a low magnitude photovoltaic effect. This hints at the possibility of using this system for organic solar cells also. The thesis presented the initial observation of photorefractive effect in a polybenzoxazine based polymer system. A detailed analysis of the effect of C60, ECZ and DR1 can be carried out to check for the possibility of a high efficiency photorefractive system.
Resumo:
Optical limiting and thermal lensing studies are carried out in C70–toluene solutions. The measurements are performed using 9-ns pulses generated from a frequencydoubled Nd:YAG laser at 532 nm. Optical limiting studies in fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting. Analysis of thermal lensing measurements showed a quadratic dependence of thermal lens signal on incident laser energy, which also supports the view that optical limiting in C70 arises due to sequential two-photon absorption via excited triplet state (reverse saturable absorption).
Resumo:
In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
FePt magnetic nanoparticles are an important candidate material for many future magnetic applications. FePt exists as two main phases, that is, a disordered face-centered cubic (fcc) structure, which is generally prepared by chemical methods at low temperatures, and the high-temperature chemically ordered face-centered tetragonal (fct) structure. The fee FePt, with low coercivity but associated with superparamagnetic properties, may find applications as a magnetic fluid or as a nanoscale carrier for chemical or biochemical species in biomedical areas, while fct FePt is proposed for use in ultrahigh-density magnetic recording applications. However, for both of these applications an enhancement of the intrinsically weak magnetic properties, the avoidance of magnetic interferences from neighbor particles, and the improved stability of the small magnetic body remain key practical issues. We report a simple synthetic method for producing FePt nanoparticles that involves hydrothermal treatment of Fe and Pt precursors in glucose followed by calcination at 900 degrees C. This new method produces thermally stable spheroidal graphite nanoparticles (large and fullerene-like) that encapsulate or decorate FePt particles of ca. 5 nm with no severe macroscopic particle coalescence. Also, a low coercivity of the material is recorded; indicative of small magnetic interference from neighboring carbon-coated particles. Thus, this simple synthetic method involves the use of a more environmentally acceptable glucose/aqueous phase to offer a protective coating for FePt nanoparticles. It is also believed that such a synthetic protocol can be readily extended to the preparation of other graphite-coated magnetic iron alloys of controlled size, stoichiometry, and physical properties.
Resumo:
A macroscopic quantity of quasi-spherical fullerene-like shells (see Figure) that encapsulate iron nanoparticles containing radioisotope Tc-99m are prepared for the first time. The nanocomposite is acid-non-leachable, retaining radioactivity at an extremely high level. This method will enable rigorous studies of what are currently theoretical descriptions of nanometer-scale medicinal delivery vehicles for diagnostic and therapeutic purposes.
Resumo:
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C-60 and C-70). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.
Resumo:
A Viewpoint on: 'Surface Geometry of C60 on Ag(111)' H. I. Li, K. Pussi, K. J. Hanna, L.-L. Wang, D. D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. McGrath, and R. D. Diehl. . Published in Physical Review Letters 103, 056101 (2009) on July 27, 2009.
Resumo:
The precise atomic structure of activated carbon is unknown, despite its commercial importance. Here we show that the structure of a commercial activated carbon can be imaged directly using aberration corrected transmission electron microscopy. Images are presented both of the as-produced carbon and of the carbon following heat- treatment at 2000°C. In the 2000°C carbon clear evidence is found for the presence of pentagonal rings, suggesting that the carbons have a fullerene-related structure.
Resumo:
The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials.
Resumo:
The precise atomic structure of activated carbon is unknown, despite its huge commercial importance in the purification of air and water. Diffraction methods have been extensively applied to the study of microporous carbons, but cannot provide an unequivocal identification of their structure. Here we show that the structure of a commercial activated carbon can be imaged directly using aberration-corrected transmission electron microscopy. Images are presented both of the as-produced carbon and of the carbon following heat treatment at 2000 degrees C. In the 2000 degrees C carbon clear evidence is found for the presence of pentagonal rings, suggesting that the carbons have a fullerene-related structure. Such a structure would help to explain the properties of activated carbon, and would also have important implications for the modelling of adsorption on microporous carbons.
Resumo:
The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.
Resumo:
In this work, a systematic study of SO2 molecules interacting with pristine and transition metal (TM) covered C-60 is presented by means of first principles calculations. It is observed that the SO2 molecule interacts weakly with the pristine C-60 fullerene, although the resulting interaction is largely increased when the C-60 structure is covered with Fe, Mn, or Ti atoms and the SO2 Molecules are bounded through the TM atoms. The number of bounded SO2 molecules per TM atoms, in addition to the elevated binding energies per molecules, allows us to conclude that such composites can be used as a template for efficient devices to remove SO2 molecules or, alternatively, as SO2 gas sensor.