968 resultados para fringe mangrove forest


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study discusses the geographical distribution and the context on the occupation of mangrove swamp areas by capuchin monkeys. In addition, we assess how the dispersion to the mangrove allowed the exploration of different food items, permitting the development of predation by ambush and the use of cracking tools. From 2004 to 2008 we surveyed the main estuaries of Brazilian Amazon coast, from northeastern state of Pará to the eastern boundary of the state of Maranhão, and recorded the presence of two species of capuchin monkeys in the mangrove forest areas. Cebus apella has been widely distributed in the mangrove at the estuaries examined (excluding C. libidinosus areas). Its presence is often related to Amazon forest remnants in the neighbourhood of the mangrove swamps and thus it is possible that some groups live in both kinds of habitats. However, we recorded some populations restricted only to mangrove swamp surrounded by open areas. On the other hand, Cebus libidinosus had a distribution more restricted and isolated in mangroves. Its pattern of habitat use is consistent with geographic distribution in mangrove patches. It seems that the possible contact zone previously proposed in the literature for that two species has no evident barriers in the mangrove. Furthermore, we record cracking sites and systematic observations on the tool use, carnivory and predation by ambush in Cebus libidinosus from 2006 to 2008. Cebus libidinosus is the only Neotropical primate species in which the tool use has been systematically recorded in nature. However all previous studies had been obtained is open areas (Cerrado and Caatinga). Thus, the present study is first one to report that behaviour in forested habitats in which the tool use to cracking by capuchin monkeys is associated with the consumption of meat. In the Caatinga and Cerrado, food shortages and terrestriality has been proposed by different authors to explain the evolution of tool use in primates. Here, we analyzed the relative contribution of these two variables as selective pressures for the tool use by capuchin monkeys in the mangrove forests, an ecological scenario in which food resources is available around the year and terrestriality is limited by structural habitat features, as the presence of stilt roots and muddy soil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A ictiofauna de poças de maré tem sido bem estudada em regiões temperadas e tropicais do Pacifico. No Brasil, ainda é incipiente o conhecimento ecológico das poças de maré e das assembléias de peixes que as habitam. O presente estudo pretendeu investigar a composição e distribuição espaço-temporal das assembléias de peixes associadas às poças de maré em habitats de afloramento rochoso, floresta de mangue e marismas da Ilha do Areuá, estuário inferior do rio Curuçá, Norte do Brasil. Amostragens trimestrais foram realizadas entre fevereiro e novembro de 2009, durante a maré baixa de sizígia (lua nova), utilizando metodologia padronizada. As variáveis ambientais sofreram modificações ao longo do gradiente vertical e foram responsáveis pela distribuição espacial e temporal da ictiofauna no afloramento rochoso. A salinidade, profundidade média e heterogeneidade do substrato foram as variáveis que mais explicaram as variações na distribuição da ictiofauna. A comparação entre os habitats de afloramento rochoso, floresta de mangue e marismas evidenciou que as assembléias de peixes do afloramento rochoso são claramente distintas daquela presente nos habitats vegetados (floresta de mangue e marismas). Os resultados deste estudo sugerem que há preferências pela ictiofauna por determinados habitats em função das variáveis ambientais e heterogeneidade do substrato, porém mais estudos devem ser realizados levando em consideração relações inter e intra-especificas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterotrophic bacterial and biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both and bacterioplankton biomass and activity along the estuary. While in the Northern region is light-limited, with mean production (PP) between 1.1 and 1.9 mu g C l(-1) h(-1) and mean specific growth rates (PSG) between 0.14 and 0.16 d(-1), the Southern region registered values as high as 24.7 mu g C l(-1) h(-1) for PP and 2.45 d(-1) (mean PP between 3.4 and 7.3 mu g C l(-1) h(-1); mean PSG between 0.28 and 0.57 d(-1)). On the other hand, maximum bacterial production (BP: 63.8 mu g C l(-1) h(-1)) and specific growth rate (BSG: 32.26 d(-1)) were observed in the Northern region (mean BP between 3.4 and 12.8 mu g C l(-1) h(-1); mean BSG between 1.98 and 6.67 day(-1)). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (similar to 45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is one of the most widely found woody exotic species in South Florida. This exotic is distributed across environments with different hydrologic regimes, from upland pine forests to the edges of sawgrass marshes and into saline mangrove forests. To determine if this invasive exotic had different physiological attributes compared to native species in a coastal habitat, we measured predawn xylem water potentials (Ψ), oxygen stable isotope signatures (δ18O), and sodium (Na+) and potassium (K+) contents of sap water from plants within: (1) a transition zone (between a mangrove forest and upland pineland) and (2) an upland pineland in Southwest Florida. Under dynamic salinity and hydrologic conditions, Ψ of Schinus appeared less subject to fluctuations caused by seasonality when compared with native species. Although stem water δ18O values could not be used to distinguish the depth of Schinus and native species' water uptake in the transition zone, Ψ and sap Na+/K+ patterns showed that Schinus was less of a salt excluder relative to the native upland species during the dry season. This exotic also exhibited Na+/K+ ratios similar to the mangrove species, indicating some salinity tolerance. In the upland pineland, Schinus water uptake patterns were not significantly different from those of native species. Differences between Schinus and native upland species, however, may provide this exotic an advantage over native species within mangrove transition zones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe trajectories of selected ecological indicators used as performance measures to evaluate the success of a mangrove rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM) Delta-Lagoon complex, Colombia, as result of freshwater diversions initiated in 1995. There is a significant reduction in soil and water column salinity in all sampling stations following the hydraulic reconnection of the Clarín and Aguas Negras channels to the Magdalena River. Soil intersticial water salinity (depth: 0.5 m) (7 stations) and water column salinity (0.5 m) (10 stations) values declined significantly (soil <30 g kg-1; water <10 g kg-1) from 1994 to 2000. During 1994 soil interstitial water salinity ranged from 40 g kg-1 (Rinconada) to 100 g kg-1 (KM 13), while water column salinity fluctuated between 25-35 g kg-1 for most of the sampling stations. This salinity reduction increased mangrove forest regeneration promoting a net gain of 99 km2 from 1995 to 1999. The high precipitation recorded in 1995 and 1999 caused by El Niño-La Niña (ENSO), coinciding with the channels rehabilitation, influenced rapid mangrove regeneration. The lack of economic investment in the maintenance of the diversion structures from 2001 to 2004 caused a salinity increase affecting negatively already restored vegetation. A sustainable effort from the international community and the Colombian government is needed to maintain the strategic social and economic benefits reached until 2000 in the CGSM region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon–Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, γ-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The southern Everglades and Florida Bay have experienced a nearly 50 % reduction in freshwater flow resulting in increased salinity and landward expansion of mangrove forest. Given the marine end-member is a natural source of P to this region, it is necessary to understand the interactions between inflows and P availability in controlling the exchange of materials across the mangrove ecotone. From 2007 to 2008, we used sediment core incubations to quantify fluxes of dissolved inorganic N and P and dissolved organic carbon (DOC) in three ecotone areas (dwarf mangrove, pond, and bay). Experiments were repeated seasonally over 2 years involving P-enriched surface water as a factor. We saw consistent uptake of soluble reactive P (SRP), DOC, and nitrate + nitrite (N+N) by the soils/sediments and release of ammonium (NH4 +) from soils/sediments to the water column across all sites and seasons. P enrichment had no discernible effect on DIN or DOC flux, suggesting that rapid P uptake may have been more geochemically mediated. However, uptake of added P occurred across all sites and seasons, reflecting high uptake capacity in this carbonate system and the potential of the mangrove ecotone to sequester P as it becomes more available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds and represents the largest reservoirs of carbon (C) on earth. Particulate organic matter (POM) is another important carbon component in C cycling and controls a variety of biogeochemical processes. Estuaries, as important interfaces between land and ocean, play important roles in retaining and transforming such organic matter (OM) and serve as both sources and sinks of DOM and POM. There is a diverse array of both autochthonous and allochthonous OM sources in wetland/estuarine ecosystems. A comprehensive study on the sources, transformation and fate of OM in such ecosystems is essential in advancing our understanding of C cycling and better constraining the global C budget. In this work, DOM characteristics were investigated in different estuaries. Dissolved organic matter source strengths and dynamics were assessed in a seagrass-dominated subtropical estuarine lagoon. DOM dynamics controlled by hydrology and seagrass primary productivity were confirmed, and the primary source of DOM was quantified using the combination of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and stable C isotope analysis. Seagrass can contribute up to 72% of the DOM in the study area. The spatial and temporal variation of DOM dynamics was also studied in a freshwated dominated estuary fringed with extensive salt marshes. The data showed that DOM was primarily derived from freshwater marshes and controlled by hydrology while salt marsh plants play a significant role in structuring the distribution patterns of DOM quality and quantity. The OM dynamics was also investigated in a mangrove-dominate estuary and a comparative study was conducted between the DOM and POM pools. The results revealed both similarity and dissimilarity in DOM and POM composition. The dynamics of both OM pools are largely uncoupled as a result of source differences. Fringe mangrove swamps are suggested to export similar amounts of DOM and POM and should be considered as an important source in coastal C budgets. Lastly, chemical characterizations were conducted on the featured fluorescence component in OM in an attempt to better understand the composition and origins of the specific PARAFAC component. The traditionally defined ‘protein-like’ fluorescence was found to contain both proteinaceous and phenolic compounds, suggesting that the application of this parameter as a proxy for amino acid content and bioavailability may be limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite covering only approximately 138,000 km2, mangroves are globally important carbon sinks with carbon density values 3 to 4 times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1m of belowground carbon (BGC). Carbon stored at depths beyond 1m, and the effects of mangrove species, location and environmental context on these stores, is poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (Reduced Emissions from Deforestation and Degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5t C ha-1. Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5m2 resolution, produced an estimate of 69.41 Mt C (± 9.15 95% C.I.) for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (± 12.21 95% C.I.); an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country level mangrove map provides a valuable tool for assessing carbon stocks and visualising the distribution of BGC. Estimates at the 2.5m2 resolution provide sufficient detail for highlighting and prioritising areas for mangrove conservation and restoration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Khark & Kharko Islands are the last Northern point for fringing coral reefs in Iranian side of the Persian Gulf. These Coralline habitats are the Protected Area and Wildlife Refugees with the total area of 2400 ha which located in the territory of Bushehr Province. This research carried out during 2006-2007 with monthly sampling from 12 stations, which selected around Islands and inshore waters with maximum depth of 20 meter. Sampling was conducted using by Bongo-Net plankton sampler with 500μ of mesh size. Totally, 1808 specimen from 45 family fish larvae was identified in studied area, including: 21 coralline fish larva families and 24 shore fish larvae such as pelagic and demersal fishes which some of them known as indicator, sentinel or endemic species for coral reef ecosystems. The results was shown that coral reef diversity in coral reefs (Khark & Kharko Islands) is more than other habitats such as estuary and river mouth, creeks, mangrove forest sites, and off shore water of the Persian Gulf and Oman Sea Iranian side. Among Identified families, Clupeidae, Blenniidae, Sillaginidae, Atherinidae and Tripterygiidae; with more abundance were dominant families in studied area. The pick of fish larvae abundance family were estimated in spring. There were significant differences between seasonally abundance and sub areas, but there were not significant differences in diversity indexes between Khark and Kharko stations with coastal stations (p< 0.05). The mean abundance of fish larvae were estimated 18.7083 larvae under 10m² of sea surface, and the mean diversity indexes and evenness were estimated 0.7135 and 0.565342 consequently, that was showed the area is under ecological stress for fish larvae, and wasn’t stable. Therefore, from the ecological point of view, only some of the fish larvae groups as like Clupeidae were dominant. Thus, they were the main cause of the fish larvae abundance change in studied area. Due to geographical location of Khark and Kharko Islands and among the environmental parameters, Its seems that the condition of sea current is the main cause for present or absent and distribution patterns of fish larvae in area. Abundance of fish larvae in west of Islands was higher than eastern parts in the spring. But this condition will be reversed in eastern part of Island and several coastal stations, so that the Islands surrounding clock wise current to cause fish larvae distribution patterns.