978 resultados para friction coefficient


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a newly proposed machining method named “surface defect machining” (SDM) [Wear, 302, 2013 (1124-1135)] was explored for machining of nanocrystalline beta silicon carbide (3C-SiC) at 300K using MD simulation. The results were compared with isothermal high temperature machining at 1200K under the same machining parameters, emulating ductile mode micro laser assisted machining (µ-LAM) and with conventional cutting at 300 K. In the MD simulation, surface defects were generated on the top of the (010) surface of the 3C-SiC work piece prior to cutting, and the workpiece was then cut along the <100> direction using a single point diamond tool at a cutting speed of 10 m/sec. Cutting forces, sub-surface deformation layer depth, temperature in the shear zone, shear plane angle and friction coefficient were used to characterize the response of the workpiece. Simulation results showed that SDM provides a unique advantage of decreased shear plane angle which eases the shearing action. This in turn causes an increased value of average coefficient of friction in contrast to the isothermal cutting (carried at 1200 K) and normal cutting (carried at 300K). The increase of friction coefficient however was found to aid the cutting action of the tool due to an intermittent dropping in the cutting forces, lowering stresses on the cutting tool and reducing operational temperature. Analysis shows that the introduction of surface defects prior to conventional machining can be a viable choice for machining a wide range of ceramics, hard steels and composites compared to hot machining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the concept of engine downsizing becomes ever more integrated into automotive powertrain development strategies, so too does the pressure on turbocharger manufacturers to deliver improvements in map width and a reduction in the mass flow rate at which compressor surge occurs. A consequence of this development is the increasing importance of recirculating flows, both in the impeller inlet and outlet domains, on stage performance.
The current study seeks to evaluate the impact of the inclusion of impeller inlet recirculation on a meanline centrifugal compressor design tool. Using a combination of extensive test data, single passage CFD predictions, and 1-D analysis it is demonstrated how the addition of inlet recirculation modelling impacts upon stage performance close to the surge line. It is also demonstrated that, in its current configuration, the accuracy of the 1-D model prediction diminishes significantly with increasing blade tip speed.
Having ascertained that the existing model requires further work, an evaluation of the vaneless diffuser modelling method currently employed within the existing 1-D model is undertaken. The comparison of the predicted static pressure recovery coefficient with test data demonstrated the inherent inadequacies in the resulting prediction, in terms of both magnitude and variation with flow rate. A simplified alternative method based on an equivalent friction coefficient is also presented that, with further development, could provide a significantly improved stage performance prediction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ria deAveiro is a very complex shallow water coastal lagoon located on the northwest of Portugal. Important issues would be left unanswered without a good understanding of hydrodynamic and transport processes occurring in the lagoon. Calibration and validation of hydrodynamic, salt and heat transport models for Ria de Aveiro lagoon are presented. The calibration of the hydrodynamic model was performed adjusting the bottom friction coefficient, through the comparison between measured and predicted time series of sea surface elevation for 22 stations. Harmonic analysis was performed in order to evaluate the model's accuracy. To validate the hydrodynamic model measured and predicted SSE values were compared for 11 stations, as well as main flow direction velocities for 10 stations. The salt and heat transport models were calibrated comparing measured and predicted time series of salinity and water temperature for 7 stations, and the RMS of the difference between the series was determined. These models were validated comparing the model results with an independent field data set. The hydrodynamic and the salt and heat transport models for Ria de Aveiro were successfully calibrated and validated. They reproduce accurately the barotropic flows and can therefore adequately represent the salt and heat transport and the heat transfer processes occurring in Ria deAveiro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work multilayered micro/nanocrystalline (MCD/NCD) diamond coatings were developed by Hot Filament Chemical Vapour Deposition (HFCVD). The aim was to minimize the surface roughness with a top NCD layer, to maximize adhesion onto the Si3N4 ceramic substrates with a starting MCD coating and to improve the mechanical resistance by the presence of MCD/NCD interfaces in these composite coatings. This set of features assures high wear resistance and low friction coefficients which, combined to diamond biocompatibility, set this material as ideal for biotribological applications. The deposition parameters of MCD were optimized using the Taguchi method, and two varieties of NCD were used: NCD-1, grown in a methane rich gas phase, and NCD-2 where a third gas, Argon, was added to the gas mixture. The best combination of surface pre-treatments in the Si3N4 substrates is obtained by polishing the substrates with a 15 μm diamond slurry, further dry etching with CF4 plasma for 10 minutes and final ultrasonic seeding in a diamond powder suspension in ethanol for 1 hour. The interfaces of the multilayered CVD diamond films were characterized with high detail using HRTEM, STEM-EDX and EELS. The results show that at the transition from MCD to NCD a thin precursor graphitic film is formed. On the contrary, the transition of the NCD to MCD grade is free of carbon structures other than diamond, as a result of the richer atomic hydrogen content and of the higher substrate temperature for MCD deposition. At those transitions, WC nanoparticles were found due to contamination from the filament, being also present at the first interface of the MCD layer with the silicon nitride substrate. In order to study the adhesion and mechanical resistance of the diamond coatings, indentation and particle jet blasting tests were conducted, as well as tribological experiments with homologous pairs. Indentation tests proved the superior behaviour of the multilayered coatings that attained a load of 800 N without delamination, when compared to the mono and bilayered ones. The multilayered diamond coatings also reveal the best solid particle erosion resistance, due to the MCD/NCD interfaces that act as crack deflectors. These results were confirmed by an analytical model on the stress field distribution based on the von Mises criterion. Regarding the tribological testing under dry sliding, multilayered coatings also exhibit the highest critical load values (200N for Multilayers with NCD-2). Low friction coefficient values in the range μ=0.02- 0.09 and wear coefficient values in the order of ~10-7 mm3 N-1 m-1 were obtained for the ball and flat specimens indicating a mild wear regime. Under lubrication with physiological fluids (HBSS e FBS), lower wear coefficient values ~10-9-10-8 mm3 N-1 m-1) were achieved, governed by the initial surface roughness and the effective contact pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tribological response of multilayer micro/nanocrystalline diamond coatings grown by the hot filament CVD technique is investigated. These multigrade systems were tailored to comprise a starting microcrystalline diamond (MCD) layer with high adhesion to a silicon nitride (Si3N4) ceramic substrate, and a top nanocrystalline diamond (NCD) layer with reduced surface roughness. Tribological tests were carried out with a reciprocating sliding configuration without lubrication. Such composite coatings exhibit a superior critical load before delamination (130–200 N), when compared to the mono- (60–100 N) and bilayer coatings (110 N), considering ∼10 µm thick films. Regarding the friction behaviour, a short-lived initial high friction coefficient was followed by low friction regimes (friction coefficients between 0.02 and 0.09) as a result of the polished surfaces tailored by the tribological solicitation. Very mild to mild wear regimes (wear coefficient values between 4.1×10−8 and 7.7×10−7 mm3 N−1 m−1) governed the wear performance of the self-mated multilayer coatings when subjected to high-load short-term tests (60–200 N; 2 h; 86 m) and medium-load endurance tests (60 N; 16 h; 691 m).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les brosses de polyélectrolytes font l’objet d’une attention particulière pour de nombreuses applications car elles présentent la capacité de changer de conformation et, par conséquent, de propriétés de surface en réponse aux conditions environnementales appliquées. Le contrôle des principaux paramètres de ces brosses telles que l'épaisseur, la composition et l'architecture macromoléculaire, est essentiel pour obtenir des polymères greffés bien définis. Ceci est possible avec la Polymérisation Radicalaire par Transfert d’Atomes - Initiée à partir de la Surface (PRTA-IS), qui permet la synthèse de brosses polymériques de manière contrôlée à partir d’une couche d'amorceurs immobilisés de manière covalente sur une surface. Le premier exemple d’une synthèse directe de brosses de poly(acide acrylique) (PAA) par polymérisation radicalaire dans l’eau a été démontré. Par greffage d’un marqueur fluorescent aux brosses de PAA et via l’utilisation de la microscopie de fluorescence par réflexion totale interne, le dégreffage du PAA en temps réel a pu être investigué. Des conditions environnementales de pH ≥ 9,5 en présence de sel, se sont avérées critiques pour la stabilité de la liaison substrat-amorceur, conduisant au dégreffage du polymère. Afin de protéger de l’hydrolyse cette liaison substrat-amorceur sensible et prévenir le dégreffage non souhaité du polymère, un espaceur hydrophobique de polystyrène (PS) a été inséré entre l'amorceur et le bloc de PAA stimuli-répondant. Les brosses de PS-PAA obtenues étaient stables pour des conditions extrêmes de pH et de force ionique. La réponse de ces brosses de copolymère bloc a été étudiée in situ par ellipsométrie, et le changement réversible de conformation collapsée à étirée, induit par les variations de pH a été démontré. De plus, des différences de conformation provenant des interactions du bloc de PAA avec des ions métalliques de valence variable ont été obtenues. Le copolymère bloc étudié semble donc prometteur pour la conception de matériaux répondant rapidement a divers stimuli. Par la suite, il a été démontré qu’un acide phosphonique pouvait être employé en tant qu’ amorceur PRTA-IS comme alternative aux organosilanes. Cet amorceur phosphonate a été greffé pour la première fois avec succès sur des substrats de silice et une PRTA-IS en milieux aqueux a permis la synthèse de brosses de PAA et de poly(sulfopropyl méthacrylate). La résistance accrue à l’hydrolyse de la liaison Sisubstrat-O- Pamorceur a été confirmée pour une large gamme de pH 7,5 à 10,5 et a permis l’étude des propriétés de friction des brosses de PAA sous différentes conditions expérimentales par mesure de forces de surface. Malgré la stabilité des brosses de PAA à haute charge appliquée, les études des propriétés de friction ne révèlent pas de changement significatif du coefficient de friction en fonction du pH et de la force ionique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon nitride has demonstrated to be a potential candidate for clinical applications because it is a non-cytotoxic material and has satisfactory fracture toughness, high wear resistance and low friction coefficient. In this paper, samples of silicon nitride, which were kept into rabbits` tibias for 8 weeks, and the adjacentbone tissue were analysed by scanning electron microscopy in order to verify the bone growth around the implants and the interaction between the implant and the bone. Bone growth occurred mainly in the cortical areas, although it has been observed that the newly bone tends to grow toward the marrow cavity. Differences were observed between the implants installed into distal and proximal regions. In the first region, where the distance between the implant and the cortical bone is greater than in the proximal region, the osteoconduction process was evidenced by the presence of a bridge bone formation toward the implant surface. The results showed that silicon nitride can be used as biomaterial since the newly bone grew around the implants. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Friction is a critical factor for sheet metal forming (SMF). The Coulomb friction model is usually used in most finite element (FE) simulation for SMF. However, friction is a function of the local contact deformation conditions, such as local pressure, roughness and relative velocity. Frictional behaviour between contact surfaces can be based on three cases: boundary, hydrodynamic and mixed lubrication. In our microscopic friction model based on the finite element method (FEM), the case of dry contact between sheet and tool has been considered. In the view of microscopic geometry, roughness depends upon amplitude and wavelength of surface asperities of sheet and tool. The mean pressure applied on the surface differs from the pressure over the actual contact area. The effect of roughness (microscopic geometric condition) and relative speed of contact surfaces on friction coefficient was examined in the FE model for the microscopic friction behaviour. The analysis was performed using an explicit FE formulation. In this study, it was found that the roughness of deformable sheet decreases during sliding and the coefficient of friction increases with increasing roughness of contact surfaces. Also, the coefficient of friction increases with the increase of relative velocity and adhesive friction coefficient between contact surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model of a yam package is established for a ring spinning system. The yarn layer, surface area, and mass of the yam package are formulated with respect to the diameters of the empty bobbin and full yarn package, yarn count, and yarn winding-on time. Based on the principles of dynamics and aerodynamics, models of the power requirements for overcoming the skin friction drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn), and overcoming the yarn wind-on tension are developed. The skin friction coefficient on the surface of a rotating yam package is obtained from experiment. The power distribution during yam packaging is discussed based on a case study. The results indicate that overcoming the skin friction drag during yarn winding consumes the largest amount of energy. The energy required to overcome the yarn wind-on tension is also significant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrocarburised H13 disks were tested in dry, sliding wear against a stationary ruby ball (pin). Three different 4 h nitrocarburising treatments were compared, using N2/NH3/CO2, N2/NH3/natural gas and N2/NH3 gas mixtures, resulting in compound layers of varying thickness, hardness, porosity and oxide morphology. During mild, oxidative wear, with the formation of abrasive wear debris, the most brittle and oxidised surfaces performed poorly. Polishing to a bright, reflective finish greatly reduced wear. However, the N2/NH3/CO2 sample also frequently maintained a 'very mild' wear regime, owing to the formation of a protective film between the wear surfaces, and resulting in a lowering of the friction coefficient. This treated surface was porous and covered in a complex layer of coarse oxide+epsi-carbonitride. Nitrocarburised samples and wear tracks were characterised by optical microscopy, SEM, atomic force microscopy and stylus profilometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air drag on yarn and package surfaces affects yarn tension, which in turn affects energy consumption and ends-down in ring spinning. This study investigated the effects of yarn hairiness on air drag in ring spinning. Theoretical models of skin friction coefficient on the surface of rotating yarn packages were developed. The predicted results were verified with experimental data obtained from cotton and wool yarns. The results show that hairiness increases the air drag by about one-quarter and one-third for the rotating cotton and wool yarn packages, respectively. In addition, yarn hairiness increases the air drag by about one-tenth on a ballooning cotton yarn.