872 resultados para fracture hematoma
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.
Resumo:
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ~2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2×10-9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3×10-12, and -0.16 SD per G allele, P = 1.2×10-15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10-9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10-6 and rs2707466: OR = 1.22, P = 7.2×10-6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16-/- mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5×10-13<P<5.9×10-4) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture. © 2012 Zheng et al.
Resumo:
The distribution, phenotype, and requirement of macrophages for fracture-associated inflammation and/or early anabolic progression during endochondral callus formation were investigated. A murine femoral fracture model [internally fixed using a flexible plate (MouseFix)] was used to facilitate reproducible fracture reduction. IHC demonstrated that inflammatory macrophages (F4/80+Mac-2+) were localized with initiating chondrification centers and persisted within granulation tissue at the expanding soft callus front. They were also associated with key events during soft-to-hard callus transition. Resident macrophages (F4/80+Mac-2neg), including osteal macrophages, predominated in the maturing hard callus. Macrophage Fas-induced apoptosis transgenic mice were used to induce macrophage depletion in vivo in the femoral fracture model. Callus formation was completely abolished when macrophage depletion was initiated at the time of surgery and was significantly reduced when depletion was delayed to coincide with initiation of early anabolic phase. Treatment initiating 5 days after fracture with the pro-macrophage cytokine colony stimulating factor-1 significantly enhanced soft callus formation. The data support that inflammatory macrophages were required for initiation of fracture repair, whereas both inflammatory and resident macrophages promoted anabolic mechanisms during endochondral callus formation. Overall, macrophages make substantive and prolonged contributions to fracture healing and can be targeted as a therapeutic approach for enhancing repair mechanisms. Thus, macrophages represent a viable target for the development of pro-anabolic fracture treatments with a potentially broad therapeutic window...
Resumo:
Summary Bisphosphonates can increase bone mineral density (BMD) in children with osteogenesis imperfecta (OI). In this study of adults with OI type I, risedronate increased BMD at lumbar spine (but not total hip) and decreased bone turnover. However, the fracture rate in these patients remained high. Introduction Intravenous bisphosphonates given to children with OI can increase BMD and reduce fracture incidence. Oral and/or intravenous bisphosphonates may have similar effects in adults with OI. We completed an observational study of the effect of risedronate in adults with OI type I. Methods Thirty-two adults (mean age, 39 years) with OI type I were treated with risedronate (total dose, 35 mg weekly) for 24 months. Primary outcome measures were BMD changes at lumbar spine (LS) and total hip (TH). Secondary outcome measures were fracture incidence, bone pain, and change in bone turnover markers (serum procollagen type I aminopropeptide (P1NP) and bone ALP). A meta-analysis of published studies of oral bisphosphonates in adults and children with OI was performed. Results Twenty-seven participants (ten males and seventeen females) completed the study. BMD increased at LS by 3.9% (0.815 vs. 0.846 g/cm 2, p=0.007; mean Z-score, -1.93 vs. -1.58, p=0.002), with no significant change at TH. P1NP fell by 37% (p=0.00041), with no significant change in bone ALP (p=0.15). Bone pain did not change significantly (p=0.6). Fracture incidence remained high, with 25 clinical fractures and 10 major fractures in fourteen participants (0.18 major fractures per person per year), with historical data of 0.12 fractures per person per year. The meta-analysis did not demonstrate a significant difference in fracture incidence in patients with OI treated with oral bisphosphonates. Conclusions Risedronate in adults with OI type I results in modest but significant increases in BMD at LS, and decreased bone turnover. However, this may be insufficient to make a clinically significant difference to fracture incidence.
Resumo:
Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Resumo:
Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
Resumo:
The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.
Resumo:
In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.
Resumo:
En 52 steel has been electroslag refined and the resultant effects of refining on its mechanical properties have been assessed. It was found that refining caused a decrease in fatigue crack growth rates and increases in fatigue strength, fracture toughness, Charpy fracture energy and tensile ductility. Fatigue crack growth rates in region I and in region III were found to be considerably lower in the electroslag refined steel: they were unaffected in region II. The fracture toughness values for the electroslag refined steel are nearly twice those estimated for the unrefined steel. Measurements on heat-treated samples have shown that the electroslag refined steel has a better response to heat-treatment. The improvement in the mechanical properties is explained in terms of the removal of nonmetallic inclusions and a reduction in the sulphur content of the steel.
Resumo:
The AISI 4340 steel has been electroslag refined and the improvement in mechanical properties has been assessed. Electroslag refining (ESR) has improved tensile ductility, plane strain fracture toughness, Charpy fracture energy, and has decreased fatigue crack growth rates. The KIC values for the ESR steel are nearly twice those estimated in the unrefined steel and higher than those obtained in the vacuum arc remelted steel. Fatigue crack growth rates in region I and in region III are found to be decreased considerably in the ESR steel, while they are unaffected in region II. Measurements on heat treated samples have shown that the ESR steel has a better response to heat treatment. Both the suggested heat treatments namely austenitizing at 1140–1470 K as well as the conventional heat treatment of austenitizing at 1140 K have been followed. The improvement in the mechanical properties of ESR steel has been explained on the basis of removal of nonmetallic inclusions and reduction in sulfur content in the steel.
Resumo:
The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.
Resumo:
The occurrence of a maximum in the percentage of intergranular fracture on the fracture surface during the transition from intermediate to low fatigue crack growth rates has been observed for a high strength steel. It is suggested that transgranular planar slip leading to slip localization is essential in promoting intergranular fracture when the cyclic plastic zone size becomes equal to the prior austenite grain size.
Resumo:
The grain size dependencies of the yield and fracture stresses in hot rolled Mg-12.7 at % Cd alloy have been measured in the temperature range 77 to 420 K and are found to be in accordance with HalI-Petch type of equations. In hot rolled Mg-12.7 Cd alloy, the HalI-Petch intercept a w is higher than that in hot rolled magnesium, while the slope ky is comparable. The fracture is intercrystalline at 77 K, mixed mode at 300 K and ductile at 420 K. The above flow and fracture behaviours are interpreted in terms of the complimentary effects of texture hardening and solid solution strengthening.
Resumo:
A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.