944 resultados para forced migrants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-time scale perturbation expansions were developed in weakly viscous fluids to investigate surface wave motions by linearizing the Navier-Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived for the weakly viscid fluids. The condition for the appearance of stable surface waves was obtained and the critical curve was determined. In addition, an analytical expression for the damping coefficient was determined and the relationship between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth of fluid, etc.) was presented. Finally, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A limit stop is placed at the elbow of an L-shaped beam whose linear natural frequencies are nearly commensurable. As a result of this hardening device the non-linear system exhibits multiple internal resonances, which involve various degree of coupling between the first five modes of the beam in free vibration. A point load is so placed as to excite several modes and the resulting forced vibration is examined. In the undamped case, three in-phase and two out-of-phase solution branches have been found. The resonance curve is extremely complicated, with multiple branches and interactions between the first four modes. The amplitudes of the higher harmonics are highly influenced by damping, the presence of which can effectively attenuate internal resonances. Consequently parts of the resonance curve may be eliminated, with the resulting response comprising different distinctive branches. (C) 1996 Academic Press Limited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion is crucial to many pathophysiological processes, such as inflammatory reaction and tumor metastasis. It is mediated by specific interactions between receptors and ligands, and provides the physical linkages among cells. For example, interactions between selectins and glycoconjugate ligands mediate leukocyte initially tethering to and subsequently rolling on vascular surfaces in sites of inflammation or injury, which is determined by their fast kinetic rates. To mediate cell adhesion, the interacting receptors and ligands must anchor to apposing surfaces of two cells or a cell and the substratum, i.e. , the so-called two-dimensional (2D) binding, which differs from interactions in the fluid phase, i.e. , the three-dimensional (3D) binding. How structural variations and surface environments of interacting molecules affect their 2D kinetics, and how external forces manipulate their dissociation has little been known quantitatively, and nowadays attracts more and more attentions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation was made of forced convection film boiling of subcooled water around a sphere at atmospheric pressure. The water was sufficiently cool that the vapor condensed before leaving the film with the result that no vapor bubbles left the film. The experimental runs were made using inductively heated spheres at temperatures above 740°C. and using inlet water temperatures between 15°C. and 27°C. The spheres used had diameters of 1/2 inch, 9/16 inch, and 3/8 inch and were supported by the liquid flow. Reynolds numbers between 60 and 700 were used.

Analysis of the collected non-condensables indicated that oxygen and nitrogen dissolved in the water accumulated within the vapor film and that hetrogeneous chemical reactions occurred at the sphere surface. An iron-steam reaction resulted in more than 20% by volume hydrogen in the film at wall temperatures above 900°C. At temperatures near 1100°C. more than 80% by volume of the film was composed of hydrogen. It was found that gold plating of the sphere could eliminate this reaction.

Material and energy balances were used to derive equations which may be used to predict the overall average heat transfer coefficients for subcooled film boiling around a sphere. These equations include the effect of dissolved gases in the water. Equations also were derived which may be used to predict the composition of the film for cases in which an equilibrium exists between the dissolved gases and the gases in the film.

The derived equations were compared to the experimental results. It was found that a correlation existed between the Nusselt number for heat transfer from the vapor-liquid interface into the liquid and the Reynolds number, liquid Prandtl number product. In addition, it was found that the percentage of dissolved oxygen removed during the film boiling could be predicted to within 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the dynamics of scale interactions in a turbulent boundary layer through a forcing-response type experimental study. An emphasis is placed on the analysis of triadic wavenumber interactions since the governing Navier-Stokes equations for the flow necessitate a direct coupling between triadically consist scales. Two sets of experiments were performed in which deterministic disturbances were introduced into the flow using a spatially-impulsive dynamic wall perturbation. Hotwire anemometry was employed to measure the downstream turbulent velocity and study the flow response to the external forcing. In the first set of experiments, which were based on a recent investigation of dynamic forcing effects in a turbulent boundary layer, a 2D (spanwise constant) spatio-temporal normal mode was excited in the flow; the streamwise length and time scales of the synthetic mode roughly correspond to the very-large-scale-motions (VLSM) found naturally in canonical flows. Correlation studies between the large- and small-scale velocity signals reveal an alteration of the natural phase relations between scales by the synthetic mode. In particular, a strong phase-locking or organizing effect is seen on directly coupled small-scales through triadic interactions. Having characterized the bulk influence of a single energetic mode on the flow dynamics, a second set of experiments aimed at isolating specific triadic interactions was performed. Two distinct 2D large-scale normal modes were excited in the flow, and the response at the corresponding sum and difference wavenumbers was isolated from the turbulent signals. Results from this experiment serve as an unique demonstration of direct non-linear interactions in a fully turbulent wall-bounded flow, and allow for examination of phase relationships involving specific interacting scales. A direct connection is also made to the Navier-Stokes resolvent operator framework developed in recent literature. Results and analysis from the present work offer insights into the dynamical structure of wall turbulence, and have interesting implications for design of practical turbulence manipulation or control strategies.